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Abstract

Although the value of portfolios of real options is often affected by both exogenous

and endogenous uncertainties, most existing valuation approaches consider only the for-

mer and neglect the latter. In this paper we extend our existing approach for modelling

and approximating the value of portfolios of interdependent real options to include en-

dogenous, decision- and state-dependent uncertainties, using stochastic processes. In

particular, we study a portfolio of options under conditions of four underlying uncer-

tainties. The options are to defer investment, to stage investment, to temporarily halt

expansion, to temporarily mothball the operation, and to abandon the project. Two of

the underlying uncertainties, decision-dependent cost to completion and state-dependent

salvage value, are endogenous, the other two, annual operating revenues and their growth

rate, are exogenous. The directly-modelled dynamics of all four uncertainties and the

linear integer constraints modelling the real options’ interdependencies are integrated in

a multi-stage stochastic integer programme. Using a simulation and regression approach

to approximate the value of this optimisation problem, we present an efficient valuation

algorithm that is more transparent than those used in existing approaches, as it exploits

the problem structure to explicitly account for the path dependencies of the state vari-

ables. The applicability of the approach to complex investment projects is illustrated

by valuing an urban infrastructure investment in London. In this example we show how

the optimal value of the portfolio and its single, well-defined options are affected by the

initial level of the annual revenues, and by the degrees of exogenous and endogenous

uncertainty.
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uncertainty, State-dependent uncertainty, Simulation-and-regression approach

1. Introduction

A fundamental issue in real options analysis and decision-making under uncertainty is

how to account correctly and adequately for the multiple sources of uncertainty occurring

in most practical real-life situations. In these situations it is generally assumed that the

effective sources of uncertainty are purely exogenous and, as such, are independent of

both the actions taken by the decision maker and the state of the underlying system

affected by these decisions. For example, in the case of investment in a new wind farm,

while the wind farm’s performance depends on factors such as location, time of day and

the wind turbines’ height, parameters such as the wind speed to which the turbines

will be exposed to, and consequently the amount of power generated, are independent

of the investor’s decision of whether to build the wind farm or not. Likewise, if the

amount of power generated by such wind farm is sufficiently small and/or the relevant

wholesale electricity market to which the power is sold is comparatively large, then the

underlying wholesale price of electricity, and consequently the investor’s revenues are

also independent of the investor’s decision.

There are, however, many practical situations in which the relevant sources of uncer-

tainty are endogenous, i.e. dependent on the decision maker’s actions or the underlying

system’s state, or both. In the case of the wind farm example, if the above-mentioned

conditions are violated, i.e. if the new wind farm is sufficiently large and/or the elec-

tricity market relatively small, then the introduction of a new wind farm will affect

the wholesale price of electricity and hence the investor’s future revenues. Similarly,

although the “off-the-shelf” cost of new wind turbines may be known and a feasibility

study may provide a construction cost estimate, the actual cost of building a new wind

farm will not be known until the investor actually builds it. During the building process,

the investor reveals and learns its true capital cost. If the investor wants to sell the wind

farm at the end of its lifetime, in the absence of a second hand market, the resale value

will depend on its “state”, which may include such factors as its lifetime, asset value,

wear and tear, and decommissioning cost.

Despite the ubiquity of exogenous and endogenous uncertainties in many real-life

situations, there remains a need for a unified approach that accounts for both when

real options analysis is used to evaluate practical investment problems. Including both

types of uncertainty in a real options approach has rarely been studied in the related

literature (Ahsan and Musteen, 2011). Although portfolio of real options approaches
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have been applied when there is only exogenous uncertainty, there is a need to include

both types because that enables decision-makers to manage the two uncertainty types

simultaneously (Otim and Grover, 2012). Some authors have therefore suggested that

future work should examine the relationship and interactions between different sources

of uncertainty and the portfolio’s individual options. For example, Tiwana et al. (2006)

stated that future research should investigate how the comparative performance of in-

dividual real options is affected differentially by multiple sources of uncertainty, and Li

et al. (2007) called for studies to investigate how investment decisions are affected in-

dividually and interactively by multiple uncertainty sources. More recently, the critical

review of Trigeorgis and Reuer (2017) has suggested four extensions, three of which are

addressed here: portfolios of interdependent real options, multiple sources of uncertainty,

and endogenous resolution of uncertainty through learning.

This paper introduces a valuation approach for portfolios of interdependent real op-

tions under both exogenous and endogenous uncertainties. Considering the problem of

a sequential and partially reversible investment project, we study a portfolio of options:

to defer investment; stage investment; temporarily halt expansion; temporarily mothball

the operation; and abandon the project during either construction or operation. In the

problem studied here, the portfolio’s value is affected by four underlying uncertainties.

Of these, the project’s actual cost to completion and its salvage value, are decision- and

state-dependent, respectively. These uncertainties evolve endogenously, whereas the an-

nual (operating) revenues and their growth rate evolve exogenously. The portfolio of real

options approach of Maier et al. (2016) proposed a multi-stage stochastic integer pro-

gramming approach using influence diagrams and simulation-and-regression. To value

such a complex portfolio under both types of uncertainty, we extend this approach to

include endogenous sources of uncertainty. The directly-modelled dynamics of all four

underlying uncertainties and the linear integer constraints modelling the interdependen-

cies between real options are also integrated in this optimisation problem.

To approximate the value of this optimisation problem, we extend the simulation-

and-regression-based valuation algorithm developed by Maier et al. (2016) to include en-

dogenous uncertainty. Unlike the algorithms of Miltersen and Schwartz (2004); Schwartz

(2004); Hsu and Schwartz (2008); Zhu (2012), which are plain extensions of the algorithm

proposed by Longstaff and Schwartz (2001) for American-style options, our algorithm

takes into account the numerical implications of the state variables’ path-dependencies

on the accuracy of the approximation. We account for the negative numerical implica-

tions by exploiting the structure of the problem to be solved through dynamically and

appropriately adapting the set of basis functions used in the parametric regression. Using
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an illustrative example of an urban infrastructure investment in London, we investigate

the sensitivity of the optimal value of the portfolio and its individual options to the level

of the initial annual revenues, as well as to the degrees of exogenous and endogenous

uncertainty. In contrast to Miltersen and Schwartz (2007), who noted that the numerical

solution techniques used by Miltersen and Schwartz (2004); Schwartz (2004); Hsu and

Schwartz (2008) “cannot easily handle temporary suspensions of the” investment project

nor isolate the options’ values, this example demonstrates that our approach is flexible

and powerful, and can be applied to value both complex portfolios and their individual

real options under both types of uncertainty.

The rest of this article is organised as follows: Section 2 reviews the relevant literature

with an emphasis on the operational research as well as on the finance and management

literature. Section 3 describes the investment problem by specifying both the portfolio

of interdependent real options (Subsection 3.1) and set of uncertainties (Subsection 3.2)

considered in this work. In Section 4 we present the modeling and valuation approach

together with the simulation-and-regression-based valuation algorithm (Subsection 4.3).

The approach and the algorithm are then applied to the real-case of a district heating

network expansion investment in the London borough of Islington (Section 5). Results

are presented and discussed in Subsection 5.4. Finally, some concluding remarks and

suggestions for future research are provided in Section 6.

2. Literature review

The classification of uncertainties into exogenous and endogenous has received con-

siderable attention in different branches of literature, and importantly in the operational

research as well as in the finance and management literature. With regard to the former,

to the best of our knowledge, the work of Jonsbr̊aten et al. (1998) was the first to classify

the formulation of stochastic programs into “standard” formulations with decision in-

dependent random variables and “manageable” formulations, in which the distribution

of the random variables is dependent on decisions. Calling the former “exogenous un-

certainty” and the latter “endogenous uncertainty” (Goel and Grossmann, 2004), Goel

and Grossmann (2006) specified the way in which decisions can affect the stochastic

process – which describes the evolution of an uncertain parameter (see Kirschenmann

et al. (2014)) – by presenting two types of endogenous uncertainty. The first is when

the decision alters the probability distribution (e.g. parameters of family), whereas the

second relates to the decision affecting the timing of uncertainty resolution, a process

often described as information revelation.
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Considering the above specification of endogenous uncertainties, several relevant

works have appeared in the operations research literature over the last few decades.

As for the first type of endogenous uncertainty, Pflug (1990) was the first to take into

account decision dependent probabilities in a stochastic optimization problem by consid-

ering a controlled Markov chain where the transition operator depends on the control, i.e.

the decision. Other relevant articles related to this type are in the context of stochastic

network problems (Held and Woodruff, 2005; Peeta et al., 2010), global climate policy

(Webster et al., 2012) and natural gas markets (Devine et al., 2016). By contrast, the

second type of endogenous uncertainty has received considerable more attention in the

literature. The first work related to this type was (Goel and Grossmann, 2004), who

presented a stochastic programming approach for the planning of an investment into

a gas field with uncertain reserves represented through a decision-dependent scenario

tree. Similar studies in terms of both uncertainty representation and application do-

main include (Tarhan et al., 2009; Terrazas-Moreno et al., 2012; Gupta and Grossmann,

2014). Other relevant works include the optimisation of R&D project portfolios (Solak

et al., 2010) and clinical trial planning in the pharmaceutical R&D pipeline (Colvin and

Maravelias, 2008, 2010, 2011).

Moreover, several works have incorporated both the second type of endogenous un-

certainty and exogenous uncertainty in the formulation of stochastic programmes. For

generic problem formulations and solution strategies see the rather theoretical works of

Dupačová (2006); Goel and Grossmann (2006); Tarhan et al. (2013). Recent advances

and summaries over existing computational strategies have been presented by Apap and

Grossmann (2016); Grossmann et al. (2016). However, although almost all publications

of this branch of literature refer to the classification and specification of Jonsbr̊aten

et al. (1998) and Goel and Grossmann (2006), respectively, Mercier and Van Hentenryck

(2008) argued that problems in which merely the observation of an uncertainty depends

on the decisions, but the actual underlying uncertainty is still exogenous (= second type

of endogenous uncertainty) should be classified as “stochastic optimization problems

with exogenous uncertainty and endogenous observations”. According to their redefined

classification, problems with exogenous and the first type of endogenous uncertainty are

referred to as purely exogenous and purely endogenous, respectively.

Unlike the operational research literature, the finance and management literature

appears to be rather ambiguous, even somewhat inconsistent when it comes the classi-

fication of uncertainties. Indeed, although both the classification of uncertainties into

exogenous or endogenous (Hirshleifer and Riley, 1979) and the importance of taking

this distinction into account have been widely recognised in this branch of literature,
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especially in works related to the field of real options (Bowman and Hurry, 1993; Folta,

1998; Li et al., 2007; Li, 2007; Oriani and Sobrero, 2008), there is no clear and widely

accepted definition. For example, Pindyck (1993); Dixit and Pindyck (1994) distin-

guish between technical and input cost uncertainty while noting their different effects on

investment decisions as these incentivise investing and waiting, respectively. Building

upon this distinction, McGrath (1997) called for a third form of uncertainty that lies

in-between, and Folta (1998) stated (italics in their work) that “exogenous uncertainty

can be decreased by actions of the firm”, while “endogenous uncertainty is largely unaf-

fected by firm actions”. Furthermore, McGrath et al. (2004) refers to the exogenous and

endogenous resolution of uncertainty through the passing of time and learning, respec-

tively. By contrast, Van der Hoek and Elliott (2006) took note of uncertainties that are

state-dependent rather than dependent on the option holder’s actions (i.e. decisions).

A few studies aimed at presenting a more continuous classification of how various

sources of uncertainty are affected by the option holder’s actions. Based on the overview

of Micalizzi and Trigeorgis (1999), Scialdone (2007) presented an “uncertainty-mapping”

(similar to Bräutigam et al. (2003)) that indicates the extent to which uncertainty cat-

egories (e.g. operational, market demand, price, financial, and industry) are exogenous

or endogenous. In addition, the author qualitatively showed the categories’ relevance

to single well-defined real options (e.g. options to wait, stage, switch and abandon).

While these studies have linked different sources of uncertainty to individual option’s

relative performance, they have presented rather unsatisfactory and ambiguous quali-

tative approaches; in contrast, this paper takes a fundamentally different approach by

presenting a holistic and general portfolio of real options approach that accounts for

multiple, possibly interacting, exogenous and endogenous sources of uncertainty, as well

as their influence on the performance of the portfolio’s interdependent real options.

Various researchers have applied real option approaches to valuation problems with

both exogenous and endogenous uncertainty1. Generalising the work of Roberts and

Weitzman (1981), Pindyck (1993) evaluated a staged-investment with technical (endoge-

nous) and input cost (exogenous) uncertainty using a finite difference method. Other

relevant articles considered both types of uncertainty in the context of information tech-

nology investment projects (Schwartz and Zozaya-Gorostiza, 2003), patents and R&D

projects (Schwartz, 2004), pharmaceutical R&D projects (Hsu and Schwartz, 2008; Pen-

1Interestingly, Adner and Levinthal (2004); Cuypers and Martin (2007, 2010) argued that real options
theory cannot be applied to problems with endogenous uncertainty since, amongst other things, the real
options’ discrete nature would be eroded
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nings and Sereno, 2011), product platform flexibility planning (Jiao, 2012), and nu-

clear power plant investments (Zhu, 2012). With regard to state-dependent uncertainty,

Sbuelz and Caliari (2012) studied the influence of state-dependent cashflow volatility on

the investment decisions related to corporate growth options, whereas Palczewski et al.

(2015) examined optimal portfolio strategies under stock price dynamics with state-

dependent drift. Despite having applied real option approaches to valuation problems

with both types of uncertainty, these quantitative approaches are rather inflexible and

restricted. Furthermore, they do not address this paper’s problem in such a holistic and

unified way we do.

3. The investment problem

In this section, we present the investment problem studied here by specifying both

the portfolio of interdependent real options and the underlying set of uncertainties.

3.1. Portfolio of interdependent real options

We study the problem of a decision maker wanting to determine the value of a

sequential and partially reversible investment in a project whose stage-wise expansion

(development) can be deferred, temporarily halted and/or abandoned altogether, and,

once operating, whose cash flow generating asset can be used until the end of the asset’s

project life in Tmax3 months, temporarily mothballed and/or abandoned early.

Representing the set of flexibilities as a portfolio of interdependent real options, the

portfolio’s single, well-defined options are:

(a) Option to defer investment: Instead of starting immediately at time 0, the decision

maker may choose to defer the start of the expansion until the expiration of the

right to undertake this investment in Tmax1 months, without incurring any direct

costs associated with deferring.

(b) Option to stage investment: As the development takes time to complete, the de-

cision maker can invest at a rate of 0 < Ct ≤ Imax in period t as long as the

remaining investment cost at the beginning of period t, Kt, is greater than 0, i.e.

while the project is under construction, where Imax and K0 are the maximum rate

of investment and the initial (expected) cost of completion, respectively.

(i) Option to temporarily halt expansion: If conditions turn out to be unfavourable,

the decision maker can halt the expansion (i.e. set Ct = 0) at a cost of Cd,h,

maintain the halted expansion for a total of Tmax2 months at a monthly cost of

Ch, and, if conditions become favourable again, resume development at a cost

of Ch,d.
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(ii) Option to abandon the project during construction (i.e. whenKt > 0): Whether

developing or halted, the project can be permanently abandoned at any given

point in time t for the salvage value Xt, which is assumed to contain any costs

that abandonment during construction involves.

(c) Option to temporarily mothball the operation: If operation of the asset becomes

uneconomic, the decision maker can mothball the operating asset at a cost of Co,m,

maintain the mothballed asset at a monthly cost of Cm, and, if conditions become

favourable again, reactivate the asset at a cost of Cm,o.

(d) Option to abandon the project during operation (i.e. when Kt = 0): Whether op-

erating or mothballed, the decision maker retains the right to permanently abandon

the project at any time t for its salvage value Xt, which is assumed to contain all

costs related to abandoning during operation.

The above described individual real options are well-known and have been widely

examined in the real options literature, for overviews see Trigeorgis (1993b, 1996). The

first one, (a), is arguably the most-widely studied type of real option in the literature2,

e.g. see Trigeorgis (1993a); Tsitsiklis and Van Roy (2001); Longstaff and Schwartz

(2001). Sequential investments, as per (b), have been studied in (Roberts and Weitzman,

1981; Majd and Pindyck, 1987; Pindyck, 1993; Trigeorgis, 1993a). Of these, the works

of Majd and Pindyck (1987) and Pindyck (1993) explicitly and implicitly, respectively,

considered the possibility to temporarily halt and later resume expansion – (b-i) – yet

these authors ignored any direct costs associated with these decisions. With regard

to (b-ii), these four works also allowed for abandonment during construction, but they

neglected the project’s salvage value, which is over-simplistic; Trigeorgis (1993b, 1996)

referred to (b-ii) as the “option to default during construction”. Categorised as an option

“to alter operating scale” (Trigeorgis, 1993b), Brennan and Schwartz (1985) valued the

option to temporarily shut down operations of a copper mine, which is practically the

same as (c). Lastly, several works have analysed the flexibility related to (d). For

example, building upon (Robichek and Van Horne, 1967; Dyl and Long, 1969) and

considering an existing project with uncertain salvage value, Myers and Majd (1990)

valued such option as an American put; Trigeorgis (1993a,b) referred to (d) as the

“option to switch use”, where the salvage value represents the project’s value in its best

alternative use.

2The continuous- and discrete-time version of this option are generally referred to as American and
Bermudan call option, respectively
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3.2. Characterisation of uncertainties

This study considers four sources of uncertainty – also referred to as stochastic factors

or random variables – denoted by Kt, Vt, µt and Xt, representing the project’s actual

cost to completion at time t, the annual revenues (net cash flow) generated by operation

in period t, the growth rate of revenues in t and the salvage value at time t, respectively.

The first and the fourth uncertainty are decision- and state-dependent, respectively.

These uncertainties evolve endogenously, whereas the dynamics of the second and third

factor are exogenous. Each of the four factors is described by a discrete diffusion process

as follows:

The dynamic of the project’s actual cost to completion, Kt , depends on the rate of

investment, 0 ≤ Ct ≤ Imax, chosen by the decision maker, and is given by:

Kt+∆ = Kt − Ct∆ + σk1
√
CtKt∆ε

k1
t+∆ + σk2Kt

√
∆εk2t+∆, (1)

where ∆ is the time step, and σk1 and σk2 are the degrees of technical and input cost un-

certainty, respectively. The above equation is a discrete approximation of the controlled

diffusion process proposed by Pindyck (1993). As in (Schwartz, 2004), we focus here

on the effect of the technical uncertainty (third term), thus set σk2 = 0 in the following

analysis, thereby eliminate the influence of the input cost uncertainty (fourth term).

The annual revenues received at time t for operation between t and t + ∆, Vt, and

their rate of growth, µt, evolve exogenously according to:

Vt+∆ = e−κv∆Vt +
(
1− e−κv∆

)
V0(1 + µtt) + σv

√
1− e−2κv∆

2κv
εvt+∆, (2)

µt+∆ = e−κµ∆µt +
(
1− e−κµ∆

)
µ+ σµ

√
1− e−2κµ∆

2κµ
εµt+∆, (3)

where σv and σµ are the standard deviations of changes in Vt and µt, respectively, as well

as κv and κµ are positive mean reversion coefficients that describe the rate at which the

corresponding factors converge to their linear trend, V0(1 +µtt), and long-term average,

µ, respectively. The nested model (2)-(3) is similar to the one of Schwartz and Moon

(2001), who also used an Ornstein-Uhlenbeck process3 to describe the evolution of µt.

For the evolution of Vt, however, we apply an (arithmetic) Ornstein-Uhlenbeck model

with linear – time-varying and stochastic – trend , which is adapted from the geometric

3This is the “simplest mean-reverting process” according to Dixit and Pindyck (1994)
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mean reversion with exponential – constant and deterministic – trend of Metcalf and

Hassett (1995).

The state-dependent salvage value obtained for abandoning the project at time t,

Xt, is a function of both the expected asset value at time t, Zt, which is deterministic

and depends on the state of the asset, and a homoscedastic noise (i.e. error independent

of the state) term4, which is random and describes the percentage deviation as follows:

Xt+∆ = Zt+∆ + σxZt+∆ε
x
t+∆, (4)

where σx is the standard deviation of Xt. Unlike the existing approaches that allow for

stochastic salvage (or abandonment) values, e.g see the works of Myers and Majd (1990);

Adkins and Paxson (2017) and literature cited therein, which assume these values evolve

exogenously, we introduce a state-dependent salvage value, as suggested in (Van der

Hoek and Elliott, 2006), thus representing one of the many practical situations in which

the salvage value depends on endogenous factors (e.g. see (Trigeorgis, 1993a,b)). It

is important to note that by “state” we actually mean its “resource” component (see

description in Subsection 4.1), rather than its “information” component, specifically

the latter’s three stochastic factors of (1)-(3), which are, of course, state-dependent too

because Markovian.

While εk1t+∆ is uncorrelated, εk2t+∆, εvt+∆, εµt+∆ and εxt+∆ are correlated standard nor-

mal random variables (mean 0, variance 1) whose increments are independently and

identically distributed, with correlation matrix (= covariance matrix Σ):
1 ρk2,v ρk2,µ ρk2,x

ρk2,v 1 ρv,µ ρv,x

ρk2,µ ρv,µ 1 ρµ,x

ρk2,x ρv,x ρµ,x 1


4. Methods

This section contains the modelling of the investment problem as a sequential decision-

making problem, the formulation of the valuation problem as a multi-stage stochastic

integer programme, and the description of the valuation algorithm applied.

4For a brief description of the modeling of both homoscedastic and heteroscedastic (i.e. state-
dependent) noise see (Powell, 2011).
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4.1. Modelling

The flexibilities available to the decision maker when having the portfolio of inter-

dependent real options of Subsection 3.1 are shown by the influence diagram in Figure

1. It contains nine nodes of which five are decision nodes and four are terminal nodes,

1
Undeveloped

2 Expired

3Developing 6
Operating

4 Unfinished

9

Completed

5
Halted

7 Uncompleted

8
Mothballed

Defer (1)

Continue (4) Continue (11)

Reactivate (15)

Mothball (13)

Maintain (17)

Abandon (18)

Complete (16)

Develop (2)

Operate (5)

Resume (8)

Halt (6)
Maintain (9)

Abandon (10)Expire (3)

Abandon (7) Abandon (14)

Complete (12)

Figure 1: Flexibilities provided by portfolio of interdependent real options.

as well as 18 transitions that link these nodes. The set of nodes and transitions is given

by N = {1, 2, . . . , 9} and H = {1, 2, . . . , 18}, respectively, and the duration of transition

h ∈ H is ∆h months.

The state of the investment project at time t is written as:

St = (t,Nt, Tt, Qt︸ ︷︷ ︸
Rt

,Kt, Vt, µt, Xt︸ ︷︷ ︸
It

), (5)

where Nt ∈ N is the (decision or terminal) node at time t; Tt is the time left (in months)

at t to defer investment (h = 1), halt expansion (h ∈ {6, 9}) or use the developed asset

(h ∈ {11, 13, 15, 17}); Qt is the amount invested up to time t; and Kt, Vt, µt and Xt are

as defined in Subsection 3.2. The first four variables of St are part of the resource state

Rt, which is deterministic, whereas the information state It is made up of the problem’s

four random variables, two of which are exogenous and two are endogenous, decision-

and state-dependent.

The binary decision variables associated with the transitions available at decision

node Nt at time t, at = (ath)h∈bD(Nt), have to satisfy the feasible region ASt , which is

11



defined by the following set of linear integer constraints:

∑
h∈bD(Nt)

ath = 1, ∀Nt ∈ {1, 3, 5, 6, 8}, (6)

at1T
max
1 < Tt + Tmax1 , (7)

(1− at5 − at7)K0 < Kt +K0, (8)

at5Kt = 0, (9)

athT
max
2 < Tt + Tmax2 , ∀h ∈ {6, 9}, (10)

athTt = 0, ∀h ∈ {12, 16}, (11)

(1− ath)Tmax3 < Tt + Tmax3 , ∀h ∈ {12, 16}, (12)

where ath ∈ {0, 1}, ∀h ∈ H, and

bD(Nt) =



{1, 2, 3}, if Nt = 1,

{4, 5, 6, 7}, if Nt = 3,

{8, 9, 10}, if Nt = 5,

{11, 12, 13, 14}, if Nt = 6,

{15, 16, 17, 18}, if Nt = 8,

{}, otherwise.

(13)

The transition function, which is generically written as SM (St, at,Wt+∆h
) and de-

scribes the evolution of St from t to t+ ∆h after having made decision ath with respect

to ASt and learned new information Wt+∆h
, is composed of the resource transition func-

tion SR(·) : Rt → Rt+∆h
as well as the information transition function SI(·) : It → It+∆h

.

With regard to the former, the transition of t is trivial as it simply evolves to t+∆h; the

transition of Nt is implicitly given by the adjacency matrix of the directed (and cyclic)

graph (N ,H) underlying the influence diagram (matrix not shown here in order to save

space); the transition of Tt is given by:

Tt+∆h
=



max{Tt −∆h, 0}, if ath = 1, h ∈ H1,

Tmax2 , if at2 = 1,

Tmax3 −∆5, if at5 = 1,

Tt, otherwise,

(14)
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where T0 = Tmax1 and H1 = {1, 6, 9, 11, 13, 15, 17}; and the transition of Qt is given by:

Qt+∆h
=

Qt + Imax∆h, if ath = 1, h ∈ {2, 4, 8},

Qt, otherwise,
(15)

where Q0 = 0. In contrast to the deterministic transitions of the variables of Rt, the

information state variables evolve generally stochastically according to:

Kt+∆h
=

max
{
Kt − Imax∆h + σk1

√
ImaxKt∆hε

k1
t+∆h

, 0
}
, if ath = 1, h ∈ {2, 4, 8},

Kt, otherwise,

(16)

Vt+∆h
= e−κv∆hVt +

(
1− e−κv∆h

)
V0(1 + µtt) + σv

√
1− e−2κv∆h

2κv
εvt+∆h

, (17)

µt+∆h
= e−κµ∆hµt +

(
1− e−κµ∆h

)
µ+ σµ

√
1− e−2κµ∆h

2κµ
εµt+∆h

, (18)

Xt+∆h
= Zt+∆h

(St+∆h
) + σxZt+∆h

(St+∆h
)εxt+∆h

, (19)

where Zt(St), the expected asset value at time t, is given by:

Zt(St) =



−αImax, if Nt = 3 ∧Kt > 0,

γQt, if Nt = 3 ∧Kt = 0,

−βImax, if Nt = 5,

γQte
−ξ(Tmax3 −Tt), if Nt = 6,

δQte
−ξ(Tmax3 −Tt), if Nt = 8,

0, otherwise,

(20)

where α ≥ 0 and β ≥ 0 define the expected abandonment cost when Developing or

Halted, respectively; γ ≥ 0 and δ ≥ 0 are pay-out ratios determining the expected asset

value when Operating or Mothballed, respectively; and ξ is the monthly depreciation

rate describing the asset value’s decline over time. It is important to note that since the

process (16) and the processes (17)-(19) are uncorrelated (σk2 = 0), the optimal rate of

investment, Ct, in (1) and consequently in (16) is either Imax or 0, as analytically shown

by Pindyck (1993); Schwartz and Zozaya-Gorostiza (2003) and referred to as “bang-bang

policy” by Schwartz (2004).
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Lastly, the pay-off function is represented by:

Πt(St, at) =− Imax(∆2at2 + ∆4at4) + Vt(at5 + at11) +Xt(at7 + at10 + at14 + at18)

− Cd,hat6 − (Ch,d + Imax∆8)at8 − Ch∆9at9 +Xt(at12 + at16)

− Co,mat13 + (Vt − Cm,o)at15 − Cm∆17at17.

(21)

Note that, for the sake of simplicity, it is assumed that completing the project after

Tmax3 months of use – by making either transition 12 (when Operating) or transition

16 (when Mothballed) – results in a pay-off of Xt, which thus represents the project’s

residual value.

4.2. Valuation problem

Having fully modeled the sequential decision-making problem, as described by Maier

et al. (2016), the value of the portfolio of interdependent real options at time 0 given

state S0, G0(S0), is obtained by solving the following multi-stage stochastic integer

programme:

G0(S0) = max
(at)t∈T

E
[∑

t∈T e
−rtΠt(St, at)

∣∣S0

]
, (22)

where S0 = (0, 1, Tmax1 , 0,K0, V0, µ0, X0) , at = (ath)h∈bD(Nt), T is the set of decision

times (or decision epochs), St+∆h
= SM (St, at,Wt+∆h

), and r is the risk-free rate.

Applying Bellman’s “principle of optimality”, the optimisation problem in (22) can

be solved recursively with the optimal value of being in state St given by:

Gt(St) = max
at

Πt(St, at) + E
[
e−r∆hGt+∆h

(St+∆h
)
∣∣St, at] (23)

s.t. ath ∈ {0, 1}, ∀h ∈ bD(Nt), (24)

at ∈ A(St), (25)

St+∆h
= SM (St, at,Wt+∆h

), ∀h ∈ bD(Nt), (26)

where Wt+∆h
=
(
εk1t+∆, ε

v
t+∆, εµt+∆, ε

x
t+∆

)
describes the information that arrives between

time t and t+∆h. The aim is then to determine G0(S0), given the boundary (or terminal)

condition Gt(St) = 0,∀t ∈ T , Nt ∈ {2, 4, 7, 9}.

4.3. The simulation-and-regression-based valuation algorithm

In order to approximate the value of the portfolio of interdependent real options given

by the optimisation problem (23)-(26), we extend the simulation-and-regression-based

14



valuation algorithm developed by Maier et al. (2016) to include endogenous sources of

uncertainty. Furthermore, our proposed algorithm is both a generalisation and formal-

isation of the solution procedures offered by Miltersen and Schwartz (2004); Schwartz

(2004); Hsu and Schwartz (2008); Zhu (2012), which are plain extensions of the algorithm

proposed by Longstaff and Schwartz (2001) for single American-style options. While our

algorithm also consists of an induction procedure with a forward and a backward pass as

in (Maier et al., 2016), the procedure’s individual steps were adapted to include endoge-

nous uncertainty and to explicitly account for the numerical implications of the state

variables’ path dependencies on the accuracy of the approximation. See Appendix A

for a description of the solution procedure’s steps in which we assumed, for the sake of

simplicity, that ∆h = ∆1, ∀h ∈ {2, 4, 6, 8, 9} and ∆h = ∆5,∀h ∈ {11, 13, 15, 17}.
The forward induction procedure generates the discrete state space St through “ex-

ploration” of the resource state space Rt and simulation (Monte Carlo sampling) of the

information state space It for all t ∈ T . However, in addition to the path dependency

of Rt because of the sequential decision process underlying the portfolio of real options

(Maier et al., 2016), now both Rt and It are path-dependent because of the decision-

dependent cost to completion, Kt. In fact, whether a resource state and its corresponding

information state can be reached at time t (and are therefore part of Rt and It, respec-

tively) does not solely depend on the sequence of decisions made up to this point, but

also on how Kt evolves stochastically; for instance, it might be that a particular Rt can

be reached in only ΩRt ⊆ Ω, where |ΩRt | < |Ω|. Moreover, since the stochastic cost to

completion can be directly translated into a stochastic time to completion, the decision

times in T are also path-dependent.

As a strategy in our procedure to overcome the curse of dimensionality related to

both It and the outcome space (for a discussion see Powell (2011); Maier et al. (2016);

Nadarajah et al. (2017)), whenever needed we approximate the conditional expectation

in (23), which represents the continuation value, by the following parametric model:

Φ̂
LSt
t (St, at) =

LSt∑
l=0

α̂tl(S
R(Rt, at))φStl(It), (27)

where LSt is the model’s dimension, {φStl}
LSt
l=0 are called basis functions (or features),

and the coefficients
(
α̂tl(S

R(Rt, at))
)LSt
l=0

are obtained by the least-squares regression in

(A.4). Unlike the parametric model of Maier et al. (2016), here LSt and φStl depend on

St, which enables us to reduce the model’s dimension if Nt = 1 (Nt = 3 ∧ Kt = 0 or

Nt ∈ {6, 8}) by omitting functions of Kt and Xt (Kt) in the regression, thus reducing

15



computational cost. Importantly, the continuous function (27) is determined separately

for each relevant and feasible decision at, given state St, whilst taking into account the

set of paths ΩRt in which Rt can actually be reached. By contrast, in the setting of

Maier et al. (2016), every Rt can be reached along each path ω ∈ Ω as it only considered

exogenous uncertainty.

The valuation procedure shown in Algorithm 1 applies a standard backward induc-

tion to approximate the value of the multi-stage stochastic integer programme (23)-(26).

Starting at t = max T and moving backwards to t = min T \ 0, for each state St ∈ St
perform the following three steps: (i) approximate the continuation values by (27) and

(A.4) separately for all feasible at that do not lead to a terminal node, otherwise set them

to 0 (lines 3-9 ); (ii) compute the pathwise optimisers ât(ω) for all ω ∈ ΩRt (line 11 ); (iii)

using these pathwise optimisers, determine the approximation Gt(St(ω)) for each path

ω ∈ ΩRt (line 12 ). At t = 0, we have (K0, V0, µ0, X0) = (K0(ω), V0(ω), µ0(ω), X0(ω)), so

we can simply calculate the value of the conditional expectation in (23) by taking aver-

ages of the path-wise continuation values over all |Ω| paths, and make optimal decisions

based on these average values, giving G0(S0) (line 17 ).

4.4. Computational efficiency and numerical accuracy

While the efficiency and the accuracy of simulation and (parametric) regression ap-

proaches generally depend on a range of factors (e.g., see Maier et al. (2016) for a recent

discussion), here the actual number of paths (|ΩRt |) available in the regression for state

St = (Rt, It) is particularly critical. Indeed, although disregarded by Miltersen and

Schwartz (2004); Schwartz (2004); Hsu and Schwartz (2008); Zhu (2012), the additional

path-dependency of both Rt and It caused by the decision-dependent uncertainty Kt

may result in |ΩRt | � |Ω|, which, in turn, generally reduces the accuracy of the para-

metric regression model5. Considering polynomials as basis functions in the parametric

model, Glasserman and Yu (2004) examined the relationship between the number of

simulated paths and the number of basis functions (LSt), and showed that the required

|ΩRt | for ensuring convergence increases exponentially in LSt . However, Cortazar et al.

(2008) have shown that taking advantage of the problem structure and carefully choos-

ing an appropriate set of basis functions (e.g. call and put options on the expected spot

5A fundamentally different approach is to use the simulated evolution of Kt to determine the prob-
ability distribution that describes the probability that construction will be completed after a certain
amount of cumulative investment. Probability distributions for technical uncertainty have been consid-
ered in several works including (Cortazar et al., 2001; Gamba, 2003; Pennings and Sereno, 2011). Here,
such probabilities can be easily integrated in the influence diagram via chance nodes.
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price (Andersen and Broadie, 2004; Nadarajah et al., 2017)), rather than simply using

high-order polynomials of information state variables as in (Glasserman and Yu, 2004),

allows one to substantially reduce the required LSt for a given level of accuracy, and

is computationally more efficient. Hence, in general by exploiting the structure of the

problem to be solved and choosing the set of basis functions appropriately, both the

efficiency of the algorithm and the accuracy of the approximation are improved.

5. An illustrative example

This section describes the computational implementation of our valuation algorithm,

provides specific details about the numerical example and presents the stochastic input

data.

5.1. Model implementation

The valuation algorithm presented in Subsection 4.3 was implemented in MATLAB.

5.2. Expansion of district heating network

We consider the real case of an investment into the expansion of the district heating

network in the London borough of Islington. We focus here on the development of the

network’s “north extension”, as identified in a recent report (Grainger and Etherington,

2014) which investigated the development of a borough-wide network on behalf of the

local council. According to this report, the capital expenditure of this expansion and

the initial, annual operating revenues are estimated at £9.94 millions (K0) and £564,600

(V0), respectively. The report also noted that the asset can be used for up to 25 years

(i.e. Tmax3 =300). The risk-free rate, used to discount monetary values, is 3.5% per year

(i.e. r = 3.5%/12), as recommended by HM Treasury (2011). In addition, we assume

the following: a maximum rate of investment of £1.0 million per month (Imax); the

possibility of deferring development for up to one year (i.e. Tmax1 =11); the possibility

of halting expansion for up to one year (i.e. Tmax2 =11); and the following durations of

transitions (in months): ∆h = 1,∀h ∈ {1, 2, 4, 6, 8, 9}; ∆h = 12, ∀h ∈ {5, 11, 13, 15, 17};
and 0 for the remainder of the transitions. Table 1 summarises the chosen input values

for this example.

5.3. Generated state space and utilised basis functions

The discrete state space was generated by applying the forward induction procedure

described in Subsection 4.3 (and Appendix A) and using the data of Subsection 5.2.

More specifically, 100,000 paths (|Ω|) were generated to describe the stochastic evolution
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Table 1: Input data for district heating network expansion adapted from Grainger and Ether-
ington (2014); HM Treasury (2011) and own estimates.

Description Parameter Value Unit

Network expansion
Cost of halting Cd,h 10 · 103 £
Cost of resuming Ch,d 10 · 103 £
Maintenance cost (halted) Ch 10 · 103 £/month
Cost of mothballing Co,m 20 · 103 £
Cost of reactivating Cm,o 20 · 103 £
Maintenance cost (mothballed) Cm 20 · 103 £/month
Risk-free rate r 0.035/12 month−1

Expiration of development right Tmax1 11 month
Maximum period to halt expansion Tmax2 11 month
Project life of developed asset Tmax3 300 month

Investment cost
Initial (expected) cost to completion K0 9.94 · 106 £
Maximum rate of investment Imax 1.0 · 106 £/month
Degree of technical uncertainty σk1 35% –

Revenuea

Initial annual operating revenue V0 564, 600 £
Speed of mean reversion in revenue κv 0.90 –
Standard deviation of revenue σv 10% month−1

Initial revenue growth rate µ0 0.10% month−1

Speed of mean reversion in growth rate κµ 0.90 –
Long-run mean growth rate level µ 0.10% month−1

Standard deviation of growth rate σµ 0.01% month−1

Salvagea

Depreciation rate ξ 0.50% month−1

Cost ratios α, β 0.30 –
Pay-out ratios δ, γ 0.70 –
Standard deviation of salvage value σx 25% –

a The correlations between processes in the four-factor model are: ρk2,v =
ρk2,µ = ρk2,x = 0, ρv,µ = −0.8, ρv,x = 0, and ρµ,x = 0.

of the four factors Kt, Vt, µ and Xt for all t ∈ T . Figure 2 shows the evolution of these

for 5 equally likely paths. As can be seen in Figure 2a, while the expected duration of

the expansion is 10 months, the actual time to build can vary substantially. Figure 3

and 4 show the total number of resource states |Rt| for all t ∈ T and the number of

paths |ΩRt | in which every Rt ∈ Rt can be reached at t ∈ T , respectively, supporting

18



0 5 10 15
0

2

4

6

8

10

t (in months)

K
t (

in
 £

m
)

(a) Actual cost to completion.

0 100 200 300
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t (in months)

V
t (

in
 £

m
)

(b) Annual (operating) revenues.

0 100 200 300

0.08

0.09

0.1

0.11

0.12

0.13

t (in months)

µ t (
in

 %
)

(c) Growth rate of annual revenues.

21 69 117 165 213 261 309
0

2

4

6

8

10

t (in months)

X
t(R

t) 
(in

 £
m

)

(d) Salvage Value at Rt = (t, 6, Tt, 9).

Figure 2: Selection of 5 equally likely paths for the evolution of the four stochastic factors.

the claim made in Subsection 4.3 that resource states may not be reachable in every

simulation path.

With regard to the parametric model in (27), we apply as basis functions polynomials

of the information state variables as well as both call and put options on the expected

value of these variables partially based on (Longstaff and Schwartz, 2001; Andersen and

Broadie, 2004; Cortazar et al., 2008; Nadarajah et al., 2017). In case (Nt = 3 ∧ Kt >

0) ∨ Nt = 5, we use a set of LSt = 51 basis functions composed of a constant term,

the four information state variables, polynomials of degree two (i.e. the squares of each

variable and their cross products), polynomials of degree three, as well as the value of

call and put options on the expected value of each variable and the square of this value.

Otherwise, if Nt = 1 (Nt = 3 ∧Kt = 0 or Nt ∈ {6, 8}), as mentioned in Subsection 4.3,
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state Rt ∈ Rt is reachable at every time t ∈ T .

we can reduce LSt to 18 (32) by eliminating all the functions of Kt and Xt (Kt) because

Kt = K0 and Xt is non-existent (Kt = 0), so these variables do not add any information

value to the least-squares regression. In order to avoid numerical problems the basis

functions were properly scaled before performing the least-squares regression, which is

based on a singular value decomposition (SVD) algorithm.

5.4. Results and discussion

In order to illustrate the extent to which the profitability of the district heating

investment project depends on the initial value of the annual revenues, V0, Table 2 shows

the sensitivity of the value of different portfolio configurations to varying levels of V0.

As can be seen, for values of V0 of £0.50 millions and below, the value of the investment

project without options, configuration (-), is 0. This is because the expected NPV of the

project is -£2.2060 millions, -£1.2751 millions, and -£0.3441 millions for values of V0

of £0.40 millions, 0.45 millions, and 0.50 millions, respectively, so the optimal “now-or-

never strategy”, which does not take any flexibility into account, is to leave the project

undeveloped. The same strategy is optimal for the project with portfolio of options

(a,b,c,d) for the lowest value of V0 under consideration. However, for levels of V0 of £0.45

millions and 0.50 millions, the value of the project with (a,b,c,d) is positive, reflecting the

substantial value of having the flexibility provided by the portfolio of interdependent real

options. Interestingly, in the first case, although the portfolio with all options achieves

a positive value there is no individual option that provides sufficient added value on its

own (i.e. in isolation), whereas in the case V0 = £0.50 millions, having the option to

defer alone – configuration (a) – also results in an economically viable project.
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As can be seen from Table 2, beginning at a V0 of £0.55 millions, the values of both

the project without any flexibilities and almost all portfolio configurations are positive.

In most cases the value of the project with (a,b,c,d) is considerable larger than without

options (-), revealing the significant added value that is obtained by considering such a

complex portfolio. While the values of the project without any options and the portfolio

with all options both increase in V0, the values of almost all of the individual options in

isolation show a different trend. Indeed, the values of the options to defer (a), to halt (b-

i), and to abandon the project during construction (b-ii) and operation (d) are decreasing

in V0, meaning there is less value in deferring, halting, and abandoning as the value of

initial annual revenues increases. This is because the annual revenues, although still

uncertain (i.e. stochastic), revert now to a linear trend that is shifted upwards, so their

level is generally higher, which makes deviating from the static now-or-never strategy,

and consequently the flexibility provided by individual real options less valuable. For

all values of V0 under consideration, the option to temporarily mothball the operation

– configuration (c) – is of no value as the simulated values of Vt are always positive.

Interestingly, the portfolio of options (a,b,c,d) is sub-additive with respect to the value

of its individual options (a), (b) and (c,d), whereas the option to stage (b), which can

be interpreted as the portfolio of options (b-i) and (b-ii), is super-additive with regard

to the combined value of (b-i) and (b-ii).

The effects of the degrees of exogenous and endogenous uncertainty on both the value

of the portfolio of options and the comparative performance of the portfolio’s individual

options are particularly important for understanding the influence of different underlying

uncertainties. In order to illustrate these effects for the exogenous annual revenues, Vt,

and the endogenous, decision-dependent cost to completion, Kt, Figure 5 shows for

Co,m = Cm,o = Cm = 0 the way in which the standard deviation of changes in revenues,

σv, and the degree of technical uncertainty, σk1 , effect the value of the investment project.

While the effects of changes of σv on the value of the project without options is negligible,

the value of the portfolio is generally increasing in σv, particularly steep for higher levels

of σv and it seems the increase is more pronounced for lower values of σk1 . This increase

in project value results from the flexibilities provided by the portfolio of real options,

which allow a decision maker to exploit the upside potential of increased annual revenues,

as compared to the negligibly affected value of the investment project without options,

which applies a static now-or-never strategy.

On the other hand, increasing σk1 from 0 to 0.05 (i.e. introducing some construction

cost uncertainty) results in a sharp decline in values of the investment project, but the

decline is smaller for the project with the portfolio of real options. The reason for
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Figure 5: Value of investment project with portfolio of real options and without options as well as
portfolio’s most valuable individual option (filled circles), as a function of degrees of revenue (σv) and
technical (σk1) uncertainty.

this sharp decline is mainly due to the increase in actual cost of completion caused by

the introduction of technical uncertainty, but also because of the discretised investment

expenditures. Unlike the investment project without options, whose value is always

decreasing in σk1 , beginning at a σk1 of 0.1, the value of the portfolio is increasing

in σk1 . This is because the flexibility provided by the portfolio, particularly by its

option to abandon during operation (d), allows one to partially reverse the investment

by recovering increased investment expenditures in situations with high values of σk1 ,

thereby taking advantage of relatively high state-dependent salvage values. This seems

to explain why option (d) is the portfolio’s most valuable individual option when the

degree of technical uncertainty is high, whereas in most other situations, the option to

defer (a) is the portfolio’s most valuable option. Interestingly, for high values of σv,

there are even situations in which options (b-i) and (c) are most-valuable, reflecting the

ability of such a complex portfolio of real options to manage exogenous and endogenous

uncertainties simultaneously in a wide range of uncertain environments.

To show the effect of the endogenous, state-dependent salvage value, Xt, on invest-

ment decisions, Figure 6 shows the extent to which the value of the investment project is
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affected by the pay-out ratios γ and δ as well as by the standard deviation σx. The value
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Figure 6: Value of investment project with portfolio of real options and without options as well as
portfolio’s most valuable individual option (filled circles), as a function of pay-out ratios (γ, δ) and
standard deviation of salvage value, σx.

of the project without options – where Xt is received as residual value when completing

the project after 25 years of operation – is positive for all parameters under consider-

ation. Furthermore, its value increases virtually linearly in (γ, δ) because of the linear

dependence of the expected asset value, Zt, on (γ, δ), but is practically unaffected by

changes in σx simply because the expected value of Xt does not change. Although the

value of the project with the portfolio of options is always greater than the value of

the project without options, the difference remains relatively constant for low values of

(γ, δ) and for both low σx and moderate (γ, δ), with the option to defer (a) being the

portfolio’s most valuable individual option in these situations. As can be seen, however,

for high expected asset values and fairly high yet risky salvage values, the portfolio con-

sidered here is capable of extracting considerable value from flexibilities, especially from

abandoning the project during either construction (b-ii) or operation (d). The above

results therefore highlight the importance of applying such a portfolio of real options

approach when there is both exogenous and endogenous uncertainty.
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6. Conclusions

This paper presents an approach for approximating the value of portfolios of interde-

pendent real options under both exogenous and endogenous uncertainties. The approach

is illustrated by valuing a complex urban infrastructure investment in London. Unlike

existing valuation approaches, which have considered only exogenous uncertainty or

rather inflexible and restricted portfolios, this work has studied a complex yet practical

portfolio of real options under conditions of four underlying uncertainties. The options

were: to defer investment; stage investment; temporarily halt expansion; temporarily

mothball the operation; and abandon the project. Two of the underlying uncertainties,

decision-dependent cost to completion and state-dependent salvage value, were endoge-

nous, whereas the other two, annual revenues and their growth rate, were exogenous.

We have extended our existing approach for valuing portfolios of interdependent real op-

tions to include endogenous uncertainties. In the new approach, the directly-modelled

dynamics of all four uncertainties and the linear integer constraints modelling the real

options’ interdependencies are integrated in a multi-stage stochastic integer programme.

This study has presented an efficient valuation algorithm to approximate the value

of this portfolio using simulation and parametric regression. In contrast to existing

valuation algorithms, ours explicitly accounts for the negative numerical implications of

the state variables’ path dependencies on the accuracy of the approximation. We do

so by exploiting the structure of the investment problem to be solved by dynamically

and appropriately adapting the basis functions used in the parametric model. The

illustrative example shows that our approach is flexible and powerful, and can be used

to value both complex portfolios and their individual real options under both types of

uncertainty. Future work will explore ways to model the dynamics of other sources

of endogenous uncertainty as well as investigate how these can be integrated into the

valuation framework presented here.
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Appendix A. Solution procedure

The forward induction procedure consists of the following steps:

1. Starting at time 0 and using (16), sample |Ω| paths of Kt conditional on at2 = 1

or at4 = 1 until Kt(ω) = 0, ∀ω ∈ Ω, where ∆con(ω) = {min t : Kt(ω) = 0} and

T con = {∆con(ω) : ω ∈ Ω} denote the construction time in path ω and the set of

construction times, respectively.

2. Determine the set of decision times, TNt , for all decisions nodes Nt ∈ {1, 3, 5, 6, 8},
forming subsets of T :

TNt =



{
i∆1 : i ∈ Z≥0, 0 ≤ i∆1 ≤ Tmax1

}
, if Nt = 1,{

τ1 + ∆1(1 + i+ 2j +m) : τ1 ∈ T1, i, j,m ∈ Z≥0,∆1(1 + i+ j) ≤ max T con,

∆1(j +m) ≤ Tmax2 max(0,min(1, j))
}
, if Nt = 3,{

τ1 + ∆1(2 + i+ 2j +m) : τ1 ∈ T1, i, j,m ∈ Z≥0,∆1(1 + i+ j) < max T con,

∆1(1 + j +m) ≤ Tmax2

}
, if Nt = 5,{

τ1 + τ con + ∆1i+ ∆5(1 + j) : τ1 ∈ T1, τ
con ∈ T con, i, j ∈ Z≥0,

∆1i ≤ Tmax2 ,∆5(1 + j) ≤ Tmax3 , if Nt = 6,{
τ1 + τ con + ∆1i+ ∆5(2 + j) : τ1 ∈ T1, τ

con ∈ T con, i, j ∈ Z≥0,

∆1i ≤ Tmax2 ,∆5(2 + j) ≤ Tmax3 , if Nt = 8,

(A.1)

3. Use (17) and (18) to sample |Ω| paths of Vt and µt, respectively, giving
(
Vt(ω), µt(ω)

)
ω∈Ω

,∀t ∈
T

4. Generate the possible resource state space Rt for each decision node and decision

time according to:

26



Rt =



(t, 1, Tmax1 − t/∆1, 0), if Nt = 1, t ∈ T1,{
(t, 3, T,Q) : τ1 ∈ T1, T,Q ∈ Z≥0, t = τ1 +Q/Imax + Tmax2 − T,

τ1 < t,∆1 ≤ Q/Imax ≤ ∆con(ω), ∃ω ∈ Ω,

0 ≤ Tmax2 − T ≤ max(t− τ1 − 2∆1, 0)
}
, if Nt = 3, t ∈ T3,{

(t, 5, T,Q) : τ1 ∈ T1, T,Q ∈ Z≥0, t = τ1 +Q/Imax + Tmax2 − T,

τ1 < t,∆1 ≤ Q/Imax < ∆con(ω), ∃ω ∈ Ω,

∆1 ≤ Tmax2 − T ≤ max(t− τ1 −∆1,∆1)
}
, if Nt = 5, t ∈ T5,{

(t, 6, T,Q) : τ1 ∈ T1, τ
con ∈ T con, T,Q, i ∈ Z≥0, Q = τ conImax,

T = Tmax3 − t+ τ1 + τ con + ∆1i, T ≤ Tmax3 −∆5,

T mod ∆5 = 0, i ≤ Tmax2

}
, if Nt = 6, t ∈ T6,{

(t, 8, T,Q) : τ1 ∈ T1, τ
con ∈ T con, T,Q, i ∈ Z≥0, Q = τ conImax,

T = Tmax3 − t+ τ1 + τ con + ∆1i, T ≤ Tmax3 − 2∆5,

T mod ∆5 = 0, i ≤ Tmax2

}
, if Nt = 8, t ∈ T8,

(A.2)

5. For all Rt ∈ Rt, t ∈ T , compute the set of paths ΩRt in which resource state Rt is

reachable by:

ΩRt =



Ω, if Nt = 1,{
ω ∈ Ω : t− τ1 − Tmax2 + T ≤ ∆con(ω), Q/Imax ≤ ∆con(ω), τ1 ∈ T1

}
, if Nt = 3,{

ω ∈ Ω : t− τ1 − Tmax2 + T < ∆con(ω), Q/Imax < ∆con(ω), τ1 ∈ T1

}
, if Nt = 5,{

ω ∈ Ω : ∆con(ω) = Q/Imax}, if Nt ∈ {6, 8}.
(A.3)

6. Use (19) and (20) to sample |ΩRt | realisations of Xt giving
(
Xt(ω)

)
ω∈ΩRt

,∀Rt ∈
Rt, t ∈ T .

The backward induction procedure is shown by Algorithm 1, with the optimal values

of the coefficients
(
αtl(S

R(Rt, at))
)LSt
l=0

, given resource state Rt and action at, in line 7

determined by (A.4).

(
α̂tl(Rt+∆h

)
)LSt
l=0

= arg min

(αtl(·))
LSt
l=0

{ ∑
ω∈ΩRt

[
e−r∆hGt+∆h

(St+∆h
(ω))−

LSt∑
l=0

αtl(Rt+∆h
)φStl(It(ω))

]2
}
,

(A.4)

where Rt+∆h
= SR(Rt, at) and St+∆h

(ω) = (Rt+∆h
, It+∆h

(ω)).
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Algorithm 1: Approximation of optimal value of problem (23)-(26)

Data: All the above
Result: G0(S0)

1 for t = max{T \ 0} do
2 forall St ∈ St do
3 forall at ∈ ASt do
4 if ath = 1, h ∈ {7, 10, 12, 14, 16, 18} then
5 Ft(St(ω), at)← 0,∀ω ∈ ΩRt

6 else
7 Use both (27) and (A.4) to determine:

Ft(St(ω), at)← Φ̂
LSt
t (St(ω), at), ∀ω ∈ ΩRt

8 end

9 end
10 forall ω ∈ ΩRt do
11 Compute pathwise optimisers:

ât(ω)← arg max
at(ω)∈ASt(ω)

{
Πt(St(ω), at(ω)) + Ft(St(ω), at(ω))

}
12 Approximate optimal portfolio value along each path ω:

Gt(St(ω))← Πt(St(ω), ât(ω)) + e−r∆hGt+∆h

(
SM
(
St(ω), ât(ω),Wt+∆h

(ω)
))

13 end

14 end
15 T ← T \ t
16 end
17 At t = 0, S0 = (0, 1, Tmax1 , 0,K0, V0, µ0, X0), determine:

G0(S0)← max
a0∈AS0

{
Π0(S0, a0) + 1

|Ω|
∑
ω∈Ω

e−r∆hG∆h

(
SM
(
S0, a0,W∆h

(ω)
))}
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