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Junichi Imai

Keio University, 3-14-1 Hiyoshi Kohoku-ku, Yokohama 223-8522, Japan. Email:jimai@ae.keio.ac.jp

Motoh Tsujimura

Doshisha University, Kamigyo-ku, Kyoto 602-8580, Japan. Email:mtsujimu@mail.doshisha.ac.jp

Abstract

This paper examines an optimal investment problem of Abel and Eberly (1997) and Imai
and Tsujimura (2016) under higher degree of ambiguity. To that end we introduces an expo-
nential Lévy process as the underlying risk process of the project. The ambiguity indicates
a manager’s disconfidence with respect to the underlying model. It can be formulated as
allowing one to change the reference probability measure into a different equivalent probabil-
ity measure. The difference between the reference measure and another equivalent measure
indicates the manager’s misspecification of the underlying model.

In the formulation, on the one hand, the firm’s manager chooses the investment level
to maximize the firm’s value. On the other hand, Nature chooses the equivalent probability
measure so that the firm’s value is minimized. Consequently, the optimal investment problem
developed in this paper can be formulated as a maxmin expected utility problem.

It is crucial to notice that an adoption of a Lévy process enables us express higher degree
of ambiguity, that is, unlike the diffusion process, when the underlying asset follows an
exponential Lévy process, a change of measure can affect not only its drift term of the
diffusion but also its variance, skewness and kurtosis via changing the jump structure of the
original Lévy process. Consequently, in this paper, we can express higher level of ambiguity,
i.e, our model can describe potential misspecification with respect to its higher moments of
the distribution.

Keywords: ambiguity, optimal investment, Lévy process,

1. Introduction

Capital budgeting has been one of the central topics in corporate finance literature. A
firm attempts to make the optimal decision to maximize shareholders’ value of the firm. In
particular, an investment decision under uncertainty has been thoroughly investigated. For
representative examples, Hartman, Abel, and Eberly (Hartman, 1972; Abel, 1983; Abel and
Eberly, 1994, 1997) investigated the impact of output price uncertainty on a firm’s capital
accumulation.

Most studies for investment decision-making under uncertainty so far have considered
the optimal investment in the presence of risk, which implies that even though a firms man-



ager recognizes unpredictable events in the future, he/she has perfect confidence about the
distribution of the future events. Abel and Eberly (1997) investigated a capital investment
problem and derived closed-form solutions under an output price risk. One of the difficulties
in applying the theoretical analyses to an actual business is to estimate parameter values of
the underlying process. In the case of financial options, it is relatively easier to statistically
estimate the parameter values since in most cases the underlying assets are traded in liquid
markets. On the other hand, in many cases of the real assets, the corresponding underlying
assets are not traded in liquid market, sometimes they are not observable at all. These facts
indicates that it is hard to obtain accurate estimation in many practical applications. Bloom
et al. (2007) provided some empirical evidences, for instance. We refer the reader to Becker
and Brownson (1964), Camerer and Weber (1992), Etner et al. (2012) and the references
therein.

One way of resolving it is to admit the possibility of the misspecification, i.e., introducing
the notion of ambiguity with respect to the underlying model. It enables one to formulate an
optimization problem with allowing a possible misspecification whereas to derive the optimal
strategy at the presence of the ambiguity. Imai and Tsujimura (2016) extended Abel and
Eberly (1997) to a problem under ambiguity. They showed that the ambiguity produces a
clear effect on the optimal decision. In particular, the existence of the ambiguity forces the
firm’s manager to have a pessimistic view with regard to the future output price, which could
lead to decreasing the firm value. Furthermore, they showed that the trade-off between the
acceptable degree of misspecification and the penalty of accepting misspecification determines
the optimal level of distortion between the reference model and the approximation model.

It is critical to notice that all the existing models that take the ambiguity into account
explicitly assume that the underlying risk follows a geometric Brownian motion. In this case,
Girsanov theorem clearly indicates that any change of measure affects only the drift term
of the process. In other words, under the assumption of the geometric Brownian motion, a
manager’s misspecification arises only on its expected rate of return, and never affects the
volatility of the underlying risk. Note that this fact is also true for any diffusion process. It is
against our intuition that a manager could misspecify not only the drift but also the volatility
term of the underlying process. Consequently, in this sense, the standard assumption with
respect to the underlying risk process used in many existing studies is not validated.

Motivated by these observations, in this paper, we examine the optimal investment prob-
lem of Abel and Eberly (1997) and Imai and Tsujimura (2016) under higher degree of am-
biguity. To that end this paper introduces an exponential Lévy process as the underlying
stochastic process of the project.

A Lévy process was first introduced in economics by Mandelbrot (1963), and since then
it has long been used in the field of finance and actuarial science. It is known that any Lévy
process can be decomposed into three parts, that is, a deterministic drift part, continuous
diffusion (volatility) part, and a jump part. Hence, it can be considered as a natural extension
of a Brownian motion and a compound Poisson process. Lévy processes have obtained a
popularity in mathematical finance because it can provide a lot of flexibility for modeling an
underlying risk.

The validity of a Lévy process in financial application is supported by many empirical
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tests. For example, Madan and Seneta (1990) reported that variance gamma Lévy process is
better fit to Australian stock market data. Rydberg (1999) applied the Lévy process to U.S.
stock prices. Prause (1999) compared the goodness of fit to German stock and US stock index
market in terms of Kolmogorov distance and Anderson & Darling statistic, and concludes
that the many infinite divisible distributions have better fit than normal distribution. A
further details about Lévy process used in finance, we refer the reader to Raible (2000).

In this paper, the ambiguity indicates a manager’s disconfidence with respect to the un-
derlying risk process. It can be formulated as allowing one to change the reference probability
measure into a different equivalent probability measure. The difference between the refer-
ence measure and another equivalent measure indicates the manager’s misspecification of
the underlying model. On the one hand, the firm’s manager chooses the investment level to
maximize the firm’s value. On the other hand, the nature choose the equivalent probability
measure so that the firm’s value is minimized. Consequently, the optimal investment prob-
lem developed in this paper can be formulated as a minimax problem. This model is now
called a maxmin (or multi-prior) expected utility (MEU) model. See Gilboa and Schmeidler
(1989), for a rigorous introduction of the MEU model. The MEU model assumes that a
decision-maker has a set of priors P that represents the fact that he/she cannot identify a
particular set of parameter values for underlying stochastic process. A similar idea has been
analyzed in the field of control theory. In order to keep control of physical systems under
some ambiguous environment, they have developed a robust control theory. See a book by
Hansen and Sargent (2008, Chapter 1) and reference therein for a review of robust control
theory.

It is crucial to notice that an adoption of a Lévy process enables us express higher degree
of ambiguity, that is, unlike the diffusion process, when the underlying asset follows an
exponential Lévy process, a change of measure can affect not only its drift term of the
diffusion but also its variance, skewness and kurtosis via changing the jump structure of the
original Lévy process. Consequently, in this paper, we can express higher level of ambiguity,
i.e, our model can describe potential misspecification with respect to its higher moments of
the distribution. However, from a mathematical viewpoint, the set of equivalent measure
for an exponential Lévy process is extremely large. First, there is no guarantee that the
transformed process with a new equivalent probability measure belongs to the class of the
exponential Lévy processes. Second, even though we restrict our attention to the set of
equivalent probability measure that preserve the class of Lévy processes, it is still too large
for us for discussing the ambiguity with respect to the model specification (see Cont and
Tankov (2004b), for example).

For this reason we further restrict the set of equivalent probability measures on the fol-
lowing two aspects. First, we employ an Esscher transform for changing the equivalent
probability measure. The Esscher transform has often been proposed and investigated in
option pricing literature.

Gerber et al. (1994) proposed to use the Esscher transform for pricing options in incom-
plete markets. The Esscher transform can be also interpreted in terms of economic theory.
It arises from a general equilibrium representative agent model with a utility in which a rel-
ative risk aversion is constant. See Keller (1997) for the detail of the discussion. Chan(1999)
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proved that the Esscher transform minimizes the relative entropy of the measure P and Q
under all equivalent martingale transformation.

Second, we employ a generalized hyperbolic (GH) Lévy process as a representative of the
Lévy process. The GH Lévy process, introduced by Barndorff-Nielsen (1977), is a special
case of the Lévy process whose marginal distribution follows the GH distribution. It is
thoroughly examined in Eberlein and Keller (1995), Prause (1999), Eberlein et al. (1998).
Although a GH Lévy process is a special class of the Lévy processes, it has a rich structure
that can offer a great variety of shapes. Many known infinitely divisible distributions can be
considered as subclasses of the GH distribution, including normal, student-t, normal inverse,
hyperbolic, variance gamma. In particular, we can examine the effect of additional degree of
the ambiguity since the GH Lévy contains the geometric Brownian motion as a special case.

In this paper, we adopt a dynamic programming to formulate the problem. First, we
introduce an iterative method for solving the maxmin problem numerically. Second, we use
a value iteration algorithm for solving a fixed point to solve an infinite time horizon problem.
Third, in order to implement the above algorithms, we utilize both a quasi-Monte Carlo
method and a spline function approximation method to enhance numerical accuracy.

This paper is organized as follows. In Section 2, we describe the investment problem under
ambiguity and formulate it as a maxmin problem. We also discuss an approximate dynamic
programming for solving the optimization problem. In Section 3, we provide numerical results
and discuss the effect of higher level of the ambiguity on the optimal decision. Finally,
concluding remarks are given in Section 4.

2. Optimal investment problem

2.1. Modelling Investment Project

First, we take a quick review an infinite-time investment model under an output price
uncertainty, that was originally developed in Abel and Eberly (1997) and extended in Imai
and Tsujimura (2016). Let F (Lt, Kt) denote a firm’s production function that takes the
Cobb–Douglas form:

F (Lt, Kt) = Lϖt K
1−ϖ
t , (1)

where Kt and Lt represent, respectively, the amount of capital stock and the labor at time
t, and ϖ ∈ (0, 1) represents the output elasticity of the labor. The amount of capital Kt is
governed by

dKt = (It − δKt)dt, K0 = k, (2)

in which It is the amount of investment at time t and δ ∈ (0, 1) is the depreciation rate.
We assume that the cost for obtaining additional amount of the capital, denoted by C, is a
function of It, given by

C(It) = c0It + c1I
ϕ
t , (3)

where c0 > 0 is the price of purchasing capital, c1 > 0 is the conversion factor with ϕ > 1 being
the adjustment cost parameter. Equation (3) indicates that to obtain additional amount of
the capital, the firm needs to pay the adjustment cost in addition to the price of the capital,
and hence the total cost becomes convex with respect to the amount of the investment.
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In the consideration of the labor cost, it can be shown that the net operating profit can
be given by π(Kt, Pt)− C(It) where π(Kt, Pt) represents the operating profit given by

π(Kt, Pt) = ηP α
t Kt,

with α = 1/(1−ϖ) > 1 and η = α−α(α− 1)α−1w1−α > 0. we assume that discount rate r is
sufficiently large so that the accumulated profit will not explode.

Let us now introduce a filtered probability space (Ω,F ,P, {Ft}t≥0). In this paper, we
assume that the underlying output price process follows Pt an exponential Lévy process, i.e.,

Pt = peXt , (4)

where Xt stands for a Lévy process with X0 = 0, a.s.
A Lévy process refers to a cádlág stochastic process that has independent and stationary

increments. The distribution of these increments are called infinitely divisible. Lévy processes
are completely characterized by the Lévy triplet or the characteristic triplet, (γ, σ2, ν) where γ
represents the drift, σ is the volatility of the Brownian part, and ν is called the Lévy measure
that governs the jump part of the process that satisfies ν(0) = 0 and

∫ (
|x|2 ∧ 1

)
dν(x) <∞.

Lévy-Khinchin representation shows that there exists γ, σ, and ν such that the characteristic
function χt of Xt has the representation

χt(z) = E
[
eizXt

]
= etψ(z)

where

ψ(z) = iγz − 1

2
σ2z2 +

∫
IR

(
eizx − 1− izh(x)

)
ν (dx) ,

and h(x) := 1[−1,1](x) is a truncation function. For a formal definition of a Lévy process, see
Sato (1999), for example.

In the presence of the ambiguity, Equation (4) can be considered as a reference model,
that is, it is a stochastic process based on the best possible estimate for the firm’s man-
ager. The firm’s manager is, however, concerned about the robustness of his/her decisions
to misspecification of the reference probability. In order to resolve the concern he/she pre-
pares for a set of equivalent probability measures, P , on (Ω,F) for expressing the possible
misspecification. Then, the reference probability measure P could be replaced by another
equivalent probability measure Q ∈ P . The penalty for a difference between the reference
probability P and another equivalent probability Q is usually imposed to avoid choosing a too
distant probability measure from the reference probability measure. We employ a relative
entropy measure or KL divergence to measure the difference, denoted by Rt(P,Q), between
the reference probability measure P and an alternative probability measure Q at time t. Let
Zt =

dQ
dP |Ft represents the density process. The relative entropy is defined as

Rt(P,Q) = EP [Zt log(Zt)] = EQ [log(Zt)] . (5)

The firm attempts to choose the optimal investment rate at each time to maximize the
expected firm’s operating profit under output price ambiguity. To solve the problem, we adopt
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the robust control approach developed by Hansen and Sargent (2001), Hansen et al. (2002,
2006), which is based on maxmin expected utility (MEU) model of Gilboa and Schmeidler
(1989). In the MEU model, it is proven that an ambiguity-averse decision-maker chooses a
policy to maximize his/her utility in the possible worst case. Let V (k, p) denote the value
function with P0 = p and K0 = k. It is formally formulated as follows:

V (k, p) = max
It∈I

min
Q∈P

{
EQ
[∫ ∞

0

e−rt {π (Kt, Pt)− C (It)} dt
]
+ θ

∫ ∞

0

e−rtRt (P,Q) dt

}
= max

It∈I
min
Q∈P

EQ
[∫ ∞

0

e−rtYtdt

]
, (6)

where
Yt := π (Kt, Pt)− C (It) + θ logZt, (7)

and θ ≥ 0 is the multiplier on the relative entropy penalty. Note that Equation (6) is based on
the new probability measure Q. The formula can be written under the reference probability
measure P.

V (k, p) = max
It∈I

min
Q∈P

EP
[∫ ∞

0

e−rtŶtdt

]
(8)

where
Ŷt := {π

(
Kt, P̂t

)
− C (It)}Zt + θZt logZt. (9)

Note that π
(
Kt, P̂t

)
− C (It) is independent, and only Zt depends on the choice of the new

probability Q.

2.2. A change of measure for a Lévy process

As mentioned in the introduction, the class of equivalent measure for an exponential Lévy
process is extremely large and there is no guarantee that the transformed process with a new
equivalent probability measure Q belongs to the class of the exponential Lévy processes.
Jacod and Shiryaev (2013) and Raible (2000) proved the necessary and sufficient condition,
respectively, for preserving the class of the exponential Lévy process by the change of measure,
which is summarized as follows:

Proposition 2.1. Let X be a Lévy process on IR with Lévy triplet (γ, σ2, ν)P under a measure
P. Then there exits an equivalent probability measure Q such that X is a Lévy process under
Q with Lévy triplet (γ̃, σ̃2, ν̃)Q, if and only if there exist β and a function y satisfying∫

IR

|h(x) (1− y(x))| ν(dx) <∞,

∫
IR

(
1−

√
y(x)

)2
ν(dx) <∞.

Furthermore, the corresponding Lévy triplet can be written by

γ̃ = γ + σ2β +

∫
R

h(x) (1− y(x)) ν(dx), (10)
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σ̃ = σ, (11)

dν̃

dν
(x) = y(x). (12)

Proposition 2.1 indicates that a change of measure that preserves the Lévy process can
be characterized by Girsanov quantities (β, y). Equation (10) indicates that the drift term
of the diffusion part is shifted by a change of measure with the Girsanov quantities, whereas
Equation (11) clearly shows that the volatility term of the diffusion part remains unchanged.
On the other hand, Equation (12) indicates that the function y can change the jump structure
under the Q-measure. In other words, unlike the diffusion process, under the assumption
that the underlying asset follows an exponential Lévy process, a change of measure can affect
not only its drift term of the diffusion but also its variance, skewness and kurtosis of the
distribution by changing the jump structure of the original Lévy process. Consequently, in
this paper, we can express higher level of ambiguity, that is, our model can describe potential
misspecification with respect to its higher moments of the distribution.

When an equivalent martingale measure Q is chosen, the relative entropy, denoted by
Rt (P,Q), can be explicitly written by

Rt (P,Q) =
t

2σ2

{
γ̃ − γ −

∫ 1

−1

x (ν̃ − ν) dx

}2

+ t

∫ ∞

−∞
(y (x) ln y (x)− y (x) + 1)ν (dx) . (13)

For a derivation of Equation (13), see in Cont and Tankov (2004b)).

2.3. A generalized hyperbolic Lévy process

Even if we restrict our attention to the class of exponential Lévy processes, the set of
equivalent probability measures is still too large to discuss the optimal investment under the
ambiguity. In fact, in the book of Cont and Tankov (2004a), they state that in the presence of
jumps even if we restrict our attention to structure preserving measures, the set of equivalent
probability measures is surprisingly large. Hence, we consider a generalized hyperbolic (GH)
Lévy process for analyzing the effect of the ambiguity on the optimal investment decision
numerically.

Let us first review a basic facts about a generalized hyperbolic (GH) Lévy process. See
Raible (2000) for a rigorous mathematical treatment and Predota (2005) for a comprehensive
survey for financial applications. The probability density function (pdf) of the GH distribu-
tion has five parameters (λg, αg, βg, µg, δg) and is given by

fGH(x;λg, αg, βg, µg, δg) =
ξ
λg
g√

2πα
2λg−1
g δ

2λg
g Kλg(ξg)

ηg(x)
λg− 1

2Kλg− 1
2

(
ηg(x)

)
eβg(x−µg), (14)

where ξg = δg
√
α2
g − β2

g , ηg(x) = αg
√
δ2g + (x− µg)2, and the parameters δg, βg, αg and λg

satisfy

δg ≥ 0, αg > 0, |βg| < αg, if λg > 0, (15)

δg > 0, αg > 0, |βg| < αg, if λg = 0, (16)

δg > 0, αg ≥ 0, |βg| ≤ αg, if λg < 0. (17)

7



Furthermore, Kλg is the modified Bessel function of the third kind with index λg and is given
by1

Kλg(u) =
1

2

∫ ∞

0

tλg−1 exp

{
−1

2
u

(
t+

1

t

)}
dt. (18)

The characteristic function ϕGH (u)and moment generating function MGH (u) of the GH
distribution are given, respectively, by

ϕGH (u) = eiµgu

(
α2
g − β2

g

α2
g − (βg + iu)2

)λg
2 Kλg

(
δg

√
α2
g − (βg + iu)2

)
Kλg

(
δg
√
α2
g − β2

g

) ,

and

MGH (u) = eµgu

(
α2
g − β2

g

α2
g − (βg + u)2

)λg
2 Kλg

(
δg

√
α2
g − (βg + u)2

)
Kλg

(
δg
√
α2
g − β2

g

) , |βg + u| < αg.

These results in turn allow us to derive moments of the GH distribution. The mean and
variance of the distribution are given, respectively, by

E [X1] = µg +
βgδ

2
g

ζg

Kλg+1(ζg)

Kλg(ζg)
, (19)

and

Var [X1] =
δ2g
ζg

Kλg+1(ζg)

Kλg(ζg)
+ β2

g

δ4g
ζ2g

(
Kλg+2(ζg)

Kλg(ζg)
−
K2
λg+1(ζg)

K2
λg
(ζg)

)
, (20)

where ζg = δg
√
α2
g − β2

g . Furthermore, the skewness γ1 and the kurtosis γ2 can be derived as
follows.

γ1 [X1] = V ar[X1]
−2

×

[
β3
gδ

6
g

ζ3g

(
Kλg+3(ζg)

Kλg(ζg)
−

3Kλg+2(ζg)Kλg+1(ζg)

K2
λg
(ζg)

+
2K2

λg+1(ζg)

K3
λg
(ζg)

)

+
3βgδ

4
g

ζ2g

(
Kλg+2(ζg)

Kλg(ζg)
−
K2
λg+1(ζg)

K2
λg
(ζg)

)]
, (21)

γ2 [X1] = −3 + V ar[X1]
−2

×

[
β8
gδ

4
g

ζ4g

(
Kλg+4(ζg)

Kλg(ζg)
−

4Kλg+3(ζg)Kλg+1(ζg)

K2
λg
(ζg)

+
6Kλg+2(ζg)K

2
λg+1(ζg)

K3
λg
(ζg)

−
K4
λg+1(ζg)

K4
λg
(ζg)

)

+
β6
gδ

2
g

ζ3g

(
6Kλg+3(ζg)

Kλg(ζg)
−

12Kλg+2(ζg)Kλg+1(ζg)

K2
λg
(ζg)

+
6K3

λg+1(ζg)

K3
λg
(ζg)

)
+

3δ4g
ζ2g

Kλg+2(ζg)

Kλg(ζg)

]
.(22)

1For the analytical details of the modified Bessel function, see Abramowitz and Stegun (1968).
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Since GH distribution is infinitely divisible, the GH Lévy process denoted by XGH (t) ={
XGH (t) , t ≥ 0

}
can be defined by its characteristic function

E
[
eiuX

GH(t)
]
=
[
ϕGH (u)

]t
.

Each of the parameters of the GH distribution can be interpreted intuitively. The pa-
rameter λg determines the subclass of the GH distribution. αg controls the steepness around
the mode of the distribution and it also affects its tail behaviour. βg indicates the ratio of
asymmetry. µg indicates the location while δg indicates the scale. See Bibby and Sorensen
(2003) for the shape of the GH distribution.

The Lévy measure of a GH distribution is explicitly given as follows.

dν(x)

dx
=


eβgx

|x|

(∫∞
0

exp{−
√

2y+α2
g |x|}

π2y
(
J2
λg(δg

√
2y)+Y 2

λg(δg
√
2y)

)dy + λge
−αg |x|

)
, λg ≥ 0,

eβgx

|x|

(∫∞
0

exp{−
√

2y+α2
g |x|}

π2y
(
J2
−λg(δg

√
2y)+Y 2

−λg(δg
√
2y)

)dy + λge
−αg |x|

)
, λg < 0.

where Jλg and Yλg represent, respectively, Bessel functions. The GH distribution includes

the normal distribution as a limiting case where βg = 0, δg → ∞, αg → ∞ with δg
αg

→ const.

In the case of the GH Lévy process, the class preserved change of measure can be simplified
as follows.

Proposition 2.2. Let XGH be a GH Lévy process with parameters (λg, αg, βg, δg, µg) under
the measure P. Then, there is another locally equivalent martingale measure Q under which
XGH is again a GH Lévy process, with parameter (λ′g, α

′
g, β

′
g, δ

′
g, µ

′
g) if and only if δ′g = δg and

µ′
g = µg.

This proposition means that if a GH Lévy process is preserved with some change of
measure, the parameters of δg and µg are never changed.

2.4. An Esscher Transform

We introduce an Esscher transform in the following form. An Esscher transform with a
parameter ξ ∈ IR from the measure P to an equivalent measure Q with a density process
Zt =

dQ
dP |Ft is defined as

Zt =
exp (ξXt)

MX(ξ)
t , (23)

where MX stands for a moment generating function of X1.
It is shown that under the Esscher transform, for all ξ ∈ IR such that E [exp (ξX1)] <∞,

Xt under the new measure Q becomes a Lévy process. The proof of this property is in
Proposition 1.8 of Raible (2000). It is also known that the measure change function by the
Esscher transform is given by the following form:

y(x) = eξx. (24)
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It is known that the equivalent martingale measure that minimize the relative entropy
can be attained via the Esscher transform. For technical details about the Esscher transform
under an exponential Lévy process, see, for example, Fujiwara and Miyahara (2003).

Note that the relative entropy is a function of the Esscher parameter ξ. Notice that the
relative entropy is convex functional of the measure Q. See, Fujiwara and Miyahara (2003)
and Cont and Tankov (2002) for the details. Raible (2000) proved that a GH distribution
is closed under the Esscher transform with changing only one parameter values, which is
summarized in the following proposition.

Proposition 2.3. An Esscher transform of a GH distribution GH(λg, αg, βg, δg, µg) with
Esscher parameter ξ ∈ (−αg − βg, αg − βg) corresponds to a change of parameter from βg to
βg + ξ.

We refer the reader to Proposition 2.11 in Raible (2000) for the proof. Proposition
2.3 indicates that choosing an equivalent probability measure Q corresponds to choosing
an Esscher parameter ξ if we focus our attention to the Esscher transform. Furthermore,
Equations (19) to (22) indicate that a change of measure with the Esscher transformation
changes not only its first moment but also higher moments of the GH distribution via βg.

2.5. A Proposed Numerical Procedure

In this paper, we employ an approximate dynamic programming (ADP for abbrevia-
tion) for solving Equation (8) where the expectation is taken under the reference probability
measure P. Although a basic idea for the numerical procedure is almost the same as the
one developed in Imai and Tsujimura (2016), we review it here for keeping this paper self-
contained. The ADP is an extension of dynamic programming, which combines simulation
and approximation in order to solve the optimization problem sufficiently accurately and
efficiently. In the paper, we directly solve the maxmin problem by computing the expected
value of the function V .

Let us assume that both an investment strategy I and an Esscher transformed strategy ξ
are fixed. We define a gain function J for given I and ξ with the current output price p and
the current capital k as

J0 (p, k, I, ξ) = EP
[∫ ∞

0

e−rtŶtdt

]
. (25)

With the gain function, we can define the value function V0, which is given by

V0 (p, k) = max
I∈I

min
ξ∈Ξ

J0 (p, k, I, ξ) . (26)

Let I∗ and ξ∗ denote the optimal investment and the optimal Esscher parameter of Equation
(26), respectively. Because the value function can be reached when we choose both the
optimal investment strategy and the optimal distortion strategy, it can be written by

V0 (p, k) = J0 (p, k, I
∗, ξ∗) , (27)

for any p and k.
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We next apply the dynamic programming principle to the investment problem and derive
the Bellman equation.

V0 (k, p) = max
I∈I

min
ξ∈Ξ

EP
[∫ ∆t

0

e−rtŶtdt+ e−r∆tV∆t

(
Ŷ∆t

)]
= max

I∈I
min
ξ∈Ξ

EP
[
e−r∆tŶ∆t∆t+ e−r∆tV∆t

(
Ŷ∆t

)]
= max

I∈I
min
ξ∈Ξ

{
e−r∆tEP

[
Ŷ∆t

]
∆t+ e−r∆tEP

[
V∆t

(
Ŷ∆t

)]}
(28)

Equation (28) is the Bellman equation we use in the numerical algorithm.
Let us now develop a numerical procedure utilized in this paper for deriving the value

function defined in Equation (28). It mainly consists of two iterative methods. The first
iterative method is called a value iteration in which the value function for p and k is obtained
by solving a fixed point problem. For technical details about the convergence of the value
iteration are given, for example, in Bertsekas (2012). The second method is for obtaining
optimal solutions with respect to the investment I and the Esscher parameter ξ provided
that p and k are given.

For solving the optimization problem numerically, we first discretize the state space (p, k)
into equally spaced grid points. Let [Pmin, Pmax] be a closed output price space, and Np

be the number of grid points. The grid points for the output price are given by pi =
Pmin + i∆p, i = 0, . . . , Np with ∆p = Pmax−Pmin

Np
. Similarly, let [Kmin, Kmax] be a closed capital

space, and Nk be the number of grid points. The grid points for the capital are given by
kj = Kmin + j∆k, j = 0, . . . , Nk with ∆k = Kmax−Kmin

Nk
.

Note that due to the constraint for the GH distribution in Equation (14), we assume that
the set Ξ satisfies this condition. In addition we assume that the set of investment I is also
bounded due to its practical reason. Accordingly, let I := [Imin, Imax] and Ξ := [ξmin, ξmax].
Note that from Proposition 2.3, ξmin ≥ −αg − βg, ξmax ≤ αg − βg must be satisfied to reserve
the class of the GH Lévy processes.

The first iterative procedure can be generated based on Equation (28). Let vm (kj, pi)
denote the m−th iterative value function with the state vector of (kj, pi). Then, m−th
iteration is given by

vm+1 (kj, pi) = max
I∈I

min
ξ∈Ξ

{
e−r∆t∆tEP

[
Ŷ∆t

]
+ e−r∆tEP [vm (p∆t, k∆t (I))]

}
, (29)

for i = 0, . . . , Np, j = 0, . . . , Nk, where

p∆t = pi exp
{
XGH

∆t (λ, α, β, δ, µ)
}
, (30)

under the reference probability measure P and

k∆t(I) = (1− δ)kj + I. (31)

To derive the value functions via the value iteration method, we need to set initial value
function for any k and p. In the paper, we set

v0 (k, p) := 0,
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for all p ∈ [Pmin, Pmax] and any k ∈ [Kmin, Kmax]. In the m−th iteration to compute each
vm+1(kj, pi), we need to solve the maxmin problem in Equation (29) for every i and j.

Let us begin with the value iteration when m = 0. Provided that the current output
price p and the current capital k are given, the optimization problem turns out to become
the following simple expression with ignoring constant terms.

max
I∈I

min
ξ∈Ξ

EP
[
Ŷ∆t

]
. (32)

Lemma ?? indicates that the maxmin problem becomes a convex-concave problem and
the globally optimal value can be theoretically guaranteed.

It is important to notice that in order to calculate the expectation, approximation methods
are required since we assume that both output price and the capital can take real values, while
we discretize the state space to make the iteration feasible. To that end, this paper introduces
two approximation methods, that is, a spline interpolation method and a quasi-Monte Carlo
method.

We first propose an function approximation method via a tensor-product, two-dimensional
spline method. It enables us to calculate value functions with off grid points when values
on grid point (kj, pi) are provided. In the paper, we employ a method proposed in page
347 of De Boor (1978). Let ṽm (k, p) denote an approximation function of the m−th value
function. In the proposed numerical algorithm, vm (k, p) in equation (29) is replaced by the
approximated value function ṽm (k, p).

Second, we employ a quasi-Monte Carlo method to compute an expectation in an efficient
manner. The quasi-Monte Carlo method is a well-known simulation method that is often re-
placed by a Monte Carlo method for enhancing numerical efficiency. Instead of using random
sequence in the Monte Carlo method, the quasi-Monte Carlo method uses a low-discrepancy
sequence for generating sample points. It is well-known that the quasi-Monte Carlo often
substantially outperforms the Monte Carlo for a wide range of problems in economics, finance
and actuarial science. See, for instance, Joy et al. (1996), for classical applications of the
method.

Let un ∈ (0, 1) be the n−th realized point from a low-discrepancy sequence with n =
1, . . . , N , and let xn = F−1

GH(un), n = 1, . . . , N , where FGH represents a cumulative distribu-
tion function of the GH distribution, and F−1

GH is its inverse. By Equation (30), the n−th
realized output price under P−measure can be given by

p∆t,n = pi exp
{
xGH∆t,n (λ, α, β, δ, µ)

}
, (33)

where xGH∆t,n (λ, α, β, δ, µ) represents n-th sample from the GH distribution. In implementing
the quasi-Monte Carlo method we employ a random number generator of Imai (2013) to
efficiently obtain samples from the GH distribution.

Then, the expected value in Equation (29) can be approximated by an average of N
function values, that is,

EP [vm (k∆t, p∆t)] ≈
1

N

N∑
n=1

ṽm (k∆t, p∆t,n). (34)
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and

EP
[
Ŷ∆t

]
≈ 1

N

N∑
n=1

Y∆t (k∆t, p∆t), (35)

respectively. The boundary conditions for numerical procedure are given as follows.

vm (k, 0) = 0,

for any k, and
vm+1 (k, p) = vm (k, Pmax) , if p > Pmax,

vm+1 (k, p) = vm (Kmax, p) , if k > Kmax.

The second iteration method is used to obtain a numerical solution of the minimax prob-
lem in Equation (29).

It should be emphasized from a computational viewpoint that for both of the iteration
procedures are equipped with convergence guarantee, namely, the true value can be ob-
tained when the number of iterations tends to infinity. However, despite this theoretical fact,
practical numerical efficiency is not always promised. In fact, our preliminary numerical
experiment clearly indicated that the numerical procedure sometimes required unbearable
computational time. In order to further enhance numerical efficiency of the method, we
implement the following two methods.

The first one can be called an adaptive grid refinement method in which we begin with
a relatively course grid, i.e., small Nk and Np, and use a finer grid when the maximum error
becomes relatively small. It enables us to reduce a computational time for early phase of the
iteration. In addition, we carefully choose initial values for each iteration. The second one is
with respect to the learning rates It has been recognized among researchers that the choice
of the learning rate has a significant impact on the computational efficiency. In the paper,
we employ an adaptive method called AdaGrad developed in Duchi et al. (2011) to improve
numerical efficiency of the convergence. They depend not only on the number of iterations
but also historical values of the learning rate.

3. A Numerical Example

This section provides numerical results under a GH Lévy ambiguity. We show the firm’s
value, the optimal investment I∗ and the optimal Esscher parameter ξ∗. By comparing
them with the results given in Imai and Tsujimura (2016) we can discuss the effect of the
ambiguity level on the optimal investment decision. The numerical results will be presented
in the conference.

4. Concluding remarks

In this paper, we examined an optimal investment problem in the presence of higher
level of ambiguity. To describe the higher level of ambiguity we assume that the underlying
risk process follows an exponential Lévy process. This assumption enables us to consider
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the manager’s misspecification for not only its average but also its variance, skewness, and
kurtosis. By applying the Esscher transform under an exponential generalize hyperbolic Lévy
process, the problem becomes easier to deal with while it is still sufficiently general for our
purpose. Numerical results revealed the impact of the high level of ambiguity on the optimal
investment policy.
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