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The Value of Waiting to Invest in a Liquidity Trap 
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the author] 

 

In this paper I examine optimal investment rules when interest rates are near the zero lower 

bound. Extant approaches produce an ambiguous relationship between investment and interest 

rates and are difficult to reconcile with prolonged periods of interest rates near the zero lower 

bound and low investment. I use the shadow-rate model of Black (1995) for modeling interest 

rate uncertainty and show that when interest rates are at the lower bound and the shadow rate is 

substantially below the bound it is always optimal to defer investment and wait for resolution of 

uncertainly about interest rates. So long as the interest rate volatility is positive, the shadow 

interest rate approach is consistent with low investment and interest rates near the zero lower 

bound. 
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1. Introduction 

In response to the 2007-8 global financial crisis, central banks of advanced economies 

implemented a variety of policies to help stabilize the economy and the financial system. 

Amongst others, the sine qua non of monetary policy action put forward by central banks was the 

reduction of the level of short -term interest rates to near zero. However, despite record low 

interest rates since 2008, GDP growth remains anemic and unemployment is persistent. The 

phenomenon in which  economic growth is weak and interest rates are close to zero is described 

by many economists as a "liquidity trap". According to the theory of liquidity traps, this happens 

when the natural rate of interest- the short-term real interest rate consistent with full 

employment-is negative but the nominal rate is stuck at the zero lower bound. This leads to 

ineffective monetary policy and to a spiral of excessive savings, a shortage of spending and 

investment and deflationary expectations.1 

 

In this paper I examine optimal investment  rules when interest rates are near the zero lower 

bound. Why do low interest rates fail to spur investment and do not induce investors to undertake 

projects with positive net present values? Long time ago studies in the finance literature have 

stressed the importance of option like characteristics in investment appraisal (see Dixit and 

Pindyck, 1994). When there is irreversibility and sunk costs an investor can either undertake a 

project today or defer and wait until more information accrues and decide whether to invest at a 

future time period. McDonald and Siegel (1986) show that when the cashflows of a project 

fluctuate stochastically over time, the option to wait is valuable and project benefits must be 

substantially above costs (e.g., twice the cost) to trigger investment decision. Besides cashflows, 
                                                           
1 Krugman (1998), Eggertsson and Woodford (2003) and Bernanke and Reinhart (2004) examine optimal monetary 

policy rules when interest rates are at zero lower bound. 

 

http://en.wikipedia.org/wiki/Sine_qua_non
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another important determinant of investment appraisal is the level of interest rates. If cashflows 

are deterministic but the level of interest rate is stochastic, the option to wait and delay 

investment is still valuable when there is anticipated resolution of uncertainly about interest rates 

and therefore project's cost of capital. Ingersoll and Ross (1992) is the first study that examines 

optimal investment rules with uncertain interest rates and deterministic cashflows. They show 

that interest rate uncertainty can delay  investment and produces an ambiguous relationship 

between investment and the level of interest rates; a reduction in interest rates does not 

necessarily lead to an increase in investment.  

 

In a single period model I show that the value of waiting versus investing today when the interest 

rates are uncertain is affected by three components. The first component is the expected change 

in the interest rates. If future interest rates are expected to rise, it is optimal to invest today and 

finance the investment at a lower cost. Conversely, if future interest rates are expected to fall it is 

optimal to wait and invest when interest rates are lower. The second component is uncertainly 

with respect to future interest rates. If interest rate volatility is high it is optimal to wait until 

uncertainty is resolved. The last component is the cost of waiting due to foregone interest. The 

cost of waiting is substantial when the level of interest rate is high and diminishes as the interest 

rate approaches zero. The relationship between investment and interest rates is ambiguous 

because it depends on the individual impact of each component. For example, a decrease in the 

interest rate will not necessarily rise investment if at the same time uncertainty about future 

interest rates increases. 
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Conventional one-factor models of interest rate dynamics are difficult to reconcile with 

prolonged periods of interest rates near the zero lower bound and low investment. For example, 

mean reverting one-factor model dynamics such as gaussian models (e.g., Vasicek, 1977), the 

square root process (e.g., Cox, Ingersoll & Ross (1985)) and the lognormal (Black and 

Karasinski, 1991) are not fully consistent with the empirical behavior of interest rates. Gaussian 

interest rate models allow for negative nominal interest rates while under lognormal models the 

zero boundary is unattainable.2 The square root model is a borderline case since zero can be 

unattainable, an absorbing barrier or a reflecting barrier. A reflecting barrier that bounces the 

interest rate off zero is obviously unrealistic and the introduction of an absorbing barrier makes 

modeling quite complicated since it requires additional specifications to determine the 

probability of the interest rate becoming positive again. Moreover, the square-root model zero 

assumes that the volatility of the interest rate vanishes as the interest rate approaches zeros, 

which is inconsistent with the empirical behavior of the short term interest rates. 3  Even if we 

disregard for the moment the zero lower bound problem, conventional mean reverting interest 

rate models have also  another important caveat. They predict that when the short-term interest 

rate is near zero, the expected change is positive to pull back the interest rate toward the long run 

mean (typically in the range of 2%-3%) and that decreases the value of waiting to invest. 

Therefore, prolonged periods of low interest rates and low investment can only occur through 

increased interest rate volatility. 

 

                                                           
2 The zero is unattainable because under the lognormal model the volatility of the interest rate vanishes when the 

interest rate approaches zero and the mean reversion component is pulling the interest rate toward the long run mean  
3 Interest rates have substantial volatility.....  
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To circumvent the zero lower bound problem I use the shadow interest rate model proposed by 

Black (1995) for the dynamics of the short rate. In his very thoughtful paper, Black (1995) 

observes that nominal interest rates cannot become negative since investors will choose to hold 

physical currency instead of an asset that pays negative interest. He suggests that the short 

interest rate has option like characteristics since it can be viewed as a call option on the shadow 

interest rate with a zero strike price. The shadow interest rate can take both positive and negative 

values and it is the rate that would have prevailed in the market should the zero lower bound 

restriction did not exist. Recent studies find that shadow rate models provide a better fit to yield 

curve dynamics when interest rates are near the zero lower bound and are more informative 

about the monetary policy stance (see, Kim and Singleton (2012), Bauer and Rudebusch (2013), 

Krippner (2012), Wu and Xia (2014), Christensen and Rudebusch (2014). 

 

I show that when the interest is well below the zero lower bound the expected change in interest 

rates and the cost of waiting is zero, and the decision to invest is driven solely by the uncertainty 

over future interest rates. So long as the interest rate volatility is positive, the shadow interest rate 

approach is consistent with low investment and interest rates near the zero lower bound. I also 

extend the model to a multi-period context and solve the problem numerically using the method 

Least-Square Monte Carlo method. 

 

2. Single Period Model 

I make the assumption that the term structure is flat and the interest rate follows a one-factor 

diffusion process:  
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 ( )
t t t t

dr r dt r dZ


              (1) 

where rt is the interest rate at time t, Zt is a standard Wiener process, κ is the speed of mean 

reversion, θ is the long run mean σ is the volatility and γ is the elasticity. The one-factor diffusion 

in (1) nests several popular one-factor interest rate models. When γ=0 the diffusion is the 

Ornstein–Uhlenbeck process proposed by Vasicek (1972) for describing the evolution of interest 

rates. Under this model, the interest rate is normally distributed and can  assume negative values 

with positive probability. For γ=1/2, model (1) becomes Feller's (1952) square root diffusion 

process introduced by Cox, Ingersoll and Ross (1985). In this model the variability of the interest 

rate depends on the square root of its level and declines as the interest rate approaches zero. If 

2
2  , zero is an unattainable boundary. Otherwise, zero can be an absorbing barrier or a 

reflecting barrier. If γ is treated as a free parameter, the process is the mean reverting  constant 

elasticity of variance proposed by Chan et al. (1992). The parameter γ captures the sensitivity of 

interest rate variability to the level of r and Chan et al. (1992) find that models with 1   

capture better the dynamics of interest rates.  

For the purposes of the one-period setting I use an Euler discretization scheme of the continuous 

time model in (1), ( )
t t t t t

r r r t r t


   
 

      , where ε is a random term from the 

standardised normal distribution. Suppose that the investment opportunity is a perpetuity with a 

riskless cash-flow per period equal to C. The cost of the investment is K. If the net present value 

at time t is positive, 
t

t

C
I K

r
  , the investment is profitable and should be taken. Suppose that 

the investor can wait one period before deciding whether to invest. Using a second order Taylor 

expansion the expected value of the investment is given by:  
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            (2) 

The difference between the one-period discounted expected investment value and the current 

investment value is equal to:  

  

  2

2 3

1
( ) ( )

(1 ) (1 ) (1 )

cos

t t t t

t t t t t t t t t t

t t t t t

I I C C
I I r r r r

r t r t r t r r

t of waiting benefit of waiting

 

   

  
         

                 (3) 

The first term is cost of waiting due to foregone interest. With nonstochastic interest rates the 

cost of waiting is the only term that determines the decision to invest and as long as interest rates 

are positive it is always optimal to invest immediately if the current NPV is positive. The second 

term captures the benefit of waiting and depends on the particular forms of the drift and diffusion 

components. For a linear interest rate drift and level dependent volatility the relationship in (3) is 

equal to: 

   
  2

2 3
( )

(1 ) (1 ) (1 )

cos

t t t t

t t t t t

t t t t t

I I t C C
I I r r

r t r t r t r r

t of w aiting benefit of w aiting


  

 
  

       
       

         (4) 

The impact of the drift component is mixed and can have either a positive or a negative effect on 

the value of waiting. If θ-r>0, the interest rate is below the long run mean and the incentive to 

wait decreases since interest rates are expected to rise. Conversely, if θ-r<0, the interest rate is 

above the long run mean and the incentive to wait increases since interest rates are expected to 

fall. The last term captures the variability of the interest rate and has always a positive effect on 

the value of waiting. The option to wait is valuable when there is anticipated resolution of 
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uncertainly about interest rates and therefore project's cost of capital. Given that the elasticity γ is 

found to be in the range of 1 to 1.5, the value of waiting is also inversely related to the level of 

interest rate. Ceteris paribus, when interest rates approach zero the value of waiting increases. 

The relationship between interest rates and investment is ambiguous since it depends on the 

individual impact of each component  in relationship (3). 

 

When interest rates are near the zero lower bound the relationship between interest rates and 

investment remains ambiguous since is depends on the effect of both the drift and the volatility 

component (the cost of waiting is almost zero). The value of waiting decreases due to the 

expected increase of the interest toward the long run mean (the long run mean is typically in the 

range of 2%-3%). On the other hand, the low level of interest rate increases the value of waiting.   

 

Following Black (1995), suppose that the interest rate is the maximum of the shadow rate st and 

a lower bound rL: 

     max( , )
t t L

r s r                   (5) 

The interest rate is equal to the shadow rate whenever the shadow rate is above the lower bound 

or otherwise equal to the lower bound.  If the interest rate follows (5), expression (4) becomes: 

 
  2

1 1 3
(max( , ) ) (max( , ) )

(1 ) (1 ) (1 )

cos

t t t t

t t t L t t t L t t

t t t t

I I t C
I I r s r r s r

r t r t r t r

t of waiting benefit of waiting

 

 

  
         

       

  (6) 

I assume that shadow rate follows the process, ( )
t t t

ds s dt dZ     , and hence can take 

negative values.  If the option is sufficiently in-the-money, eg., the shadow rate is well above the 

lower bound, the evolution of the nominal interest rate is driven by the Ornstein–Uhlenbeck 
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process , 
1 1 1

max( , )
t L t t

r r s s
  
  , with drift ( )

t
s    and volatility σ.  The decision to invest is 

determined again by (4) with γ =0. How is the value of waiting affected when the shadow rate is 

well below the lower bound? Το examine this case it is convenient to decompose the interest rate 

as follows: 

    max( , ) max( , 0) max(0, )
t t L t t L t t

r r s r s
     

   ,          (7) 

which is the sum of a digital option that delivers the lower bound whenever the shadow interest 

rate is negative and zero otherwise and a call option on the shadow interest rate with a strike 

price of zero. Suppose that ( , )
t t t

s N t 
 

  , where ( )
t t t

s s t      . The conditional 

expectations of the two components are given below: 

   

1

(m ax( , 0))

(m ax(0, )) 1

L t

t L L

t t

t t t

r
E r r N

t

E s N t f
t t





 
 

 


 
   

 

    
         

     

           (8) 

where N  and f are the cumulative distribution and the density function , respectively, of the 

standard normal variable. When 
t

s   , (max( , 0))
t L L

E r r  and 
1

(max(0, )) 0
t t

E s


 . If the 

shadow interest rate is negative and well below the lower bound, the expected interest rate 

change is zero since the nominal interest rates behaves as a deep-out-of the money option and 

1
[max( , )]

L t
E r r


 converges to rL.. The volatility term remains positive since there is still a 

probability, albeit small, that the interest rate will exceed the lower bound. A single path suffices 

to ensure that 2

1
(m ax( , ) )

t L t L
r s r


   remains positive. Given that 0

L
r t  , expression (6) is now 

equal to:  
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2

1 3
(m ax( , ) ) 0

t t t t t L t L

L

C
I I t r s r

r

benefit of w aiting

  

 
      

 

            (9) 

This is the main result of the paper. When interest rates are stuck at the lower bound and the 

shadow rate is well below the lower bound it is always optimal to wait and decide whether to 

invest at a future time period as more information accrues and uncertainty is resolved.  

3. Multi-Period Model (Incomplete) 

In this section I examine the optimal investment rule in continuous time and then solve the 

problem numerically using the Least-Square Monet Carlo method. To fix notation, the present 

value of a project that yields a stream of cash flows from t to t+Τ is given by: 

 

    ( , , ) exp ( , , )
t T s T

t t u t
t t t

V r t T E r du ds P r t s ds
 

  
  
            (10) 

where ( , , )
t

P r t s is the price of a zero coupon bond that matures at time s given that s>t. The 

optimal time to invest in the project is given by the solution to the following optimal stopping 

problem:  

     ( ) sup exp ( , , )
t t u

t
F r E r du V r T I






 
  

  
                               (11) 

where  is a random stopping time and  I is the sunk cost of the investment.  

The short interest rate r is the maximum of the shadow rate st and a lower bound rL, 

max( , )
t t L

r s r and the shadow rate follows the process, ( )
t t t

ds s dt dZ     . The price of 

the zero coupon bond that pays one dollar at time s is given by: 
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   ( , , ) exp exp max( , )
s s

Q Q

t t u t u L
t t

P X t s E r du E s r du
   

   
      

                   (12) 

Under the shadow rate approach, the conditional expectation in (11) does not have a closed-form 

solution. Gorovoi and Linetsky (2004) provide and approximation solution of bond prices based 

on Weber-Hermite parabolic cylinder functions.  

(description of discrete time algorithm for LSMC) 
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Appendix 

The conditional expectation of the first component of the interest rate is given by:  

1
(max( , 0)) ( )

t L L t L
E r r P s r


                                 (13) 

The conditional expectation of the second component of the interest rate is given by:  

2

1 1
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2

1 1 1 1 1
20
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t t t t t t t
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