
The Valuation of R&D Projects with on Option to Expand

Luiz E. Brandãoa, James S. Dyerb, Gláucia Fernandesa
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Abstract

We model a multistage finite life investment problem subject to several sources of cost and
price uncertainty, as typical of start up firms, complex industrial and construction initia-
tives and research and development projects for software, drugs and technology ventures.
Additionally, the firm also has an option to expand the original project to take advantage
of derivative investment opportunities once all the development stages are successfully com-
pleted, which is modeled as an American style option. An important characteristic of these
initiatives is that as the firm incurs cost and invests, it learns both about the difficulty of
developing and implementing the project and also about market conditions, and updates its
prospects of timely completion and of expansion accordingly. This information can then be
used to optimally decide whether further investments is warranted or not, given the expected
future revenues of the whole venture.
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1. Introduction

Most capital budgeting problems involve analysing the tradeoffs between a fixed and
certain capital investment and an uncertain stream of future cash flows. On the other hand,
a large class of problems such as the valuation of start up firms, complex industrial and
construction ventures, and research and development projects such as software, drugs and
technology initiatives, include complications not captured by this simple model. In addition
to the uncertainty over the final payoffs of the venture, for these types of problems there
is also considerable uncertainty over the cost and timing of the total investment required
and over the quality and performance of the final product. The design of an advanced
microprocessor chip, the development of a new aircraft, a start up firm or a new drug, for
example, all involve investing an uncertain amount of capital and time in order to obtain
and to bring to the market a product whose performance characteristics or final quality is
uncertain.

Another characteristic of these projects is that by investing, the firm learns about the
difficult of designing and building a new product or of performing research on a new drug,
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and updates its prospects of a successful development, timely completion and the quality
of the final product as it progresses during each development phase. This new information
also allows the firm to optimally determine whether to abandon or to continue investing in
the project at any time. This gives these projects the characteristics of a contingent claim
over the value of the completed project, and we analyse the problem from a real options
approach.

Additionally, once successfully completed, through additional investment the project
provides the firm an opportunity to optimally expand the scope of the project to new market
segments that were not originally contemplated, which may involve new uses for the original
product or making improvements or modifications that would allow it to be marketed for
marginally different uses. As an example, a low power consumption version of a successful
desktop micro processor design may expand the original market for this product to include
the notebook computer market, or a drug that is targeted to the adult patients may be
altered to also be used by children. Obviously, the prerequisite for a profitable expansion is
that the development of the original product be successfully completed and with an adequate
quality level. We assume that the project is subject to a finite economic life due to technical
obsolescence, increased competition or patent expiration.

These projects are subject to several different types of stochastic cost and demand uncer-
tainties. We model the investment cost as a diffusion process with a negative drift equivalent
to the instantaneous rate of investment, in an approach that follows [1], where the firm starts
out with an exogenously defined expected cost to completion and updates this expected cost
as new information becomes available.

Prior to the beginning of the project, the firm specifies a set of performance characteristics
the final product is expected to have, which we hereby refer to as the “quality” of the
product in a broad sense. This can be the clock speed of a new microprocessor chip design,
the operating range of a new aircraft, the maximum sustainable output of a power plant or
the effectiveness of a new drug. As the firm invests in the project it also learns about any
deviations from the expected quality and updates this information as the progresses through
each stage. We assume that the final product quality is correlated with the deviations from
the expected cost to completion in each stage.

There is also uncertainty concerning the changes in the competitive and market environ-
ment, both during and after product introduction, that may render the project worthless,
such as a preemptive move by a competitor or a technological breakthrough that makes the
product obsolete. This is modeled as an exogenous Poisson death process.

All these uncertainties are assumed to be firm or project specific private risks, uncor-
related with the market, and accordingly, command no risk premium. A different type of
uncertainty relates to the market risks associated with the future cash flows generated by
the completed project, which are a function of the market demand for the product, and
thus, a component of systematic risk.

We adopt a discrete lattice approach to obtain a dynamic programming solution for
the value of this more complex multistage investment problem and show that this method
has some computational advantages over other approaches such as simulation models or
numerical solutions. We first model the more general case of an n-stage investment project
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subject to several sources of uncertainties and then analyze the case of a three stage drug
research and development project in the pharmaceutical industry. We obtain a discrete
solution to this application and show the comparative statics.

This paper is organized as follows. In the next section we discuss previous work in this
field that is related to our work. In Section 3 we present our basic model, the notation
and the valuation equations. In Section 4 we apply the model to value a R&D project
in the pharmaceutical industry and show analytical results. In Section 5 we draw our
conclusions. The more technical proofs and details of the discretization processes are shown
in the Appendix.

2. Related Work

The valuation of R&D projects as a contingent claim on the value of the completed
project has been subject to much interest in recent years. [2] analyze a multistage investment
problem where the value of the project upon completion is uncertain. The problem of cost
uncertainty in an irreversible investment was first modeled as a real options problem by
[1], where he addressed the issue of an uncertain investment cost subject to both market
and private risks and where the value of the completed project is known with certainty. By
undertaking R&D activities and incurring costs, the firm not only produces an R&D output
but also learns about the difficulty of the research project and gets better information about
the expected remaining time and costs to completion. Based on this information, the firm
can optimally choose to continue its R&D efforts or abandon the project altogether. The
project is valued as a single period contingent claim on a fixed asset value and a closed form
solution is obtained.

[3] extended this valuation model to include a market uncertainty for the project revenues
and the possibility of catastrophic events in a multi period setting to allow for different
investment rates for each stage, where the firms has the option to abandon its R&D efforts
at any time. Since no closed solution exists, they solve by numerical methods. [4] further
extend the model to include the effects of market competition in a duopolistic market setting.
Neither of these papers discusses the option to expand the project after completion of the
R&D stages.

[5] analyze a multi stage investment project and study the impact of the interaction
between simultaneous private and market risks in the dynamics of the risk premia. They
conclude that the required risk premium for the R&D stages is significantly higher than it
would be were the R&D complete and the venture a traditional cash producing project. This
occurs even if the private risks are purely idiosyncratic in nature and are a result of the fact
that these projects have compound options on the systematic (market) uncertainty. Even
though the private risk merits no risk premium itself, due to the existence of the options, the
resolution of the private uncertainty affects the risk premium earned on the whole project.

Market practice by major firms in the industry seems to support this idea. While a
pharmaceutical firm may agree to a relatively high upfront payment and royalty fee for late
term development from a biotech firm, they are reluctant to pay as much for early stage
developments from independent research labs or academic institutions, or even refuse to do
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so at all [6]. [7] extends this model to a two firm competitive setting and concludes that
competition tends to accelerate the pace of innovation and lower the cost to consumers at
the expense of the firm’s profitability. Both these papers use numerical methods to solve
the value equations.

As more uncertainties are added to the problem, the complexity of the model increases.
[8] examine the response of a pharmaceutical firm involved in a two stage R&D process pf
a new drug to different types of government incentives. They model this as a discrete two
period project where the firm has the option to abandon development only at the end of
each stage. The novel aspect of this work is that it incorporates uncertainty in quality of the
R&D output that is endogenously specified and which in turn affects the efficiency and the
market size for the product, and then use simulation to value both the option to abandon
and the project itself.

This paper is closed to ours in the sense that it adopts a real options discrete time
approach to value the project. Their simulation model though, only allows the option to
abandon to be exercised at the end each stage, and thus requires the firm to complete any
stage already initiated regardless of the cost that will be incurred by doing so. Even if it
becomes clear to the firm that further investment is not warranted, the firm is assumed
to be incapable of interrupting the investment and abandon its research efforts until this
stage is completed. Since there is no possibility of exercise while a stage is in progress, any
learning that occurs before a particular stage is completed has no effect on that stage, as
any costs already incurred are sunk costs, and thus, irrelevant for the investment decision of
the firm. The only benefit of the learning that does occur is through the correlation between
the actual cost of the current stage and the expected initial cost of the subsequent one. This
way, if a stage suffers delays and a corresponding increase in costs, the initial expected cost
for the next stage also increases. This is an essential feature of this model without which
there would be no optionality involved in the problem, and allows the project, once initiated,
to have a negative value.

Our model differs from [8] in that it has no such limitations on the timing of the exercise
of the American option. We allow the firm to continuously decide on the optimal operating
strategy and, if necessary, abandon the project before a particular stage is completed, and
thus avoid committing resources to a project that will offer a negative expected NPV. Due
to this, there will usually be a positive probability that any particular stage will not be
completed due to the early exercise of the option to abandon. We also model the project
cash flows and the endogenous quality variable differently. Besides being affected by market
uncertainties, in our model the cash flows have an additional dimension as they are also
a function of the uncertain time required to complete the project. Quality, on the other
hand, is defined as a function of a stochastic variable that is negatively correlated with the
deviations from the expected cost to completion of each stage, whereas [8] resort to random
draws from a Beta distribution.

Our work also differs from these other previous efforts in two other aspects. First,
we analyze and incorporate the effects of an option to expand the original project during
the production and marketing phase once development of the new product is successfully
completed. The existence of such an opportunity, which is analyzed as a compound option,
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has important consequences on the prior decision of whether to abandon the project during
any of the development stages and may alter the optimal investment strategy of the firm,
and is, to the best of our knowledge, a novel addition to the literature on the valuation of
R&D projects.

Secondly, we approximate the continuous time problem with the corresponding discrete
time problem and solve using a lattice approach to model the value function and the project
options, and to obtain the solution. The discrete time problem does not have an exact
solution since it can be broken down into an infinite number of time steps, but we can define
the desired level of precision and let the model determine the granularity that is required
to achieve this precision. The solution is very flexible in its handling of complex models,
and, although it is computationally intensive, reasonable processing times can be obtained
for coarse approximations.

3. The Model

Consider a multistage investment project where the first research and development stage
(1) ends at time t = τ1 the second stage (2) ends at time t = τ2 and the last R&D stage
(n) ends at time t = τn. If successfully completed, the project provides the firm with
a continuous stream of stochastic cash flows C̃(t) during the subsequent market phase,
where t ∈ [τn, τm]. The project is subject to uncertainties concerning the total cost of the
investment required to complete each stage, the final quality of the finished product, the
level of the cash flow streams and the risk of catastrophic failure that would instantaneously
render the project worthless. All these uncertainties are assumed to be project and firm
specific idiosyncratic risks, uncorrelated to the market, and the firm and its shareholder are
assumed to be adequately diversified. Accordingly, we assign no risk premium to these risks
and discount them at the risk free rate r. The stochastic cash flows the firm receives once
all stages are completed and the product is marketed is the only source of systematic risk
of the project, and thus commands a risk adjusted discount rate µ > r. The figure 1 shows
the stages of the general model.

The initial expected costs to complete each stage are E0[K̃i], i = 1, 2, .., n, and it is
assumed that each stage has a fixed rate of investment Ii. Prior to the beginning of the
project, the firm also specifies the expected quality of the final product E0[Q̃(τn)] where
0 ≤ E0[Q̃(τn)] ≤ 1.

Without uncertainty, the actual investment costs in each stage are equal to their expected
costs and there will also be no deviations from the expected quality level of the final product.
The solution is straightforward since the project presents no managerial flexibility other than
the decision on whether to commit to the project or not at the outset, and the value V (τn)
of the expected cash flows the firm will receive upon completion of the project at t = τn is

V (τn) = E

[∫ τm

τn

C̃(t)e−µ(t−τn)dt

]
(1)

Considering that Ki = E0[K̃i], i = 1, 2, .., n, and Q = E0[Q̃(τn)], the value F (V,Ki, Q) of
the project is
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Figure 1: Stages and decisions of the general model

F (V,Ki, Q) = max

[(
V (τn)e−µτn −

n−1∑
i=0

e−rτi
∫ τi+1

τi

Ii+1e
−r(t−τi)dt|Ki, Q

)
, 0

]
(2)

where τ0 = 0, τ1 = K1

I1
and τn =

∑n
i=1

Ki

Ii
The first term is the value of the completed project cash flows discounted to the current

time t = τ0, while the remaining terms represent the present value of the total investment
costs of each stage of an n-stage project. Integrating the costs over all the development
stages we arrive at

F (V,Ki, Q) = max

[(
V (τn)e−µτn +

n−1∑
j=0

Ij+1

r

(
e−rτj+1 − e−rτj

))
|Ki, Q, 0

]
(3)

The optimal rule when no uncertainty exists is to invest whenever F (V,Ki, Q) > 0,
which is simply the traditional discounted cash flow investment criteria. Since there are
no uncertainties to be resolved in time, no learning occurs and whatever decision the firm
makes at the onset (to invest or not to invest) remains optimal throughout the full life of
the project. Without any new information forthcoming, the firm has no reason to change
its decision at any future time t > τ0.

Under uncertainty, the firm can decide not only whether to invest in the project or not,
but, once the project is underway, whether it should continue its investment efforts until all
stages are successfully completed. At any time the firm observes the expected revenues it will
receive once all stages are completed and the product is taken to market, the expected costs
remaining to complete the project, and optimally decides whether to continue or abandon.
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As the firm invests in its research and development efforts, it also learns about the difficulties,
rate of progress and probable quality of the final product, and updates its expectations of
total cost, time to completion and future revenues of the project. With this update, the firm
again verifies if the progress made so far warrants continued investment in the project and
decides optimally whether to continue or to abandon. The learning that occurs by investing
in each of the stages gives the research effort the characteristic of a contingent claim on the
value of the completed project, where the exercise price is the stochastic investment cost.

We now present the model in more detail.

3.1. The Investment Cost Model

The total cost of the investment and the time required to complete each stage are un-
certain. We follow closely the model described by [1], where the expected cost of each stage
i is E0[K̃i] and there is a constant investment rate Ii in each stage. We assume that the
expected costs in each stage follow a random walk with a negative drift term that reflects the
instantaneous (negative) investment rate of this cost stage, and that this diffusion process
is given by:

dKi = −Iidt+ σidzi τi−1 < t < τi (4)

where dzi s the standard Wiener process that governs the investment cost process for
stage i.

As the firm invests, the expected cost to completion tends to decrease, but is also subject
to random shocks which are assumed to be the consequence of purely idiosyncratic (private)
risks which can be totally diversified away. Depending on direction and intensity of these
shocks, the firm may take a longer or a shorter time to complete a particular stage than
expected, which will cause the actual investment cost to be respectively greater or less than
expected.

We assume that the initial values of the expected costs to completion for the stages are
correlated across consecutive stages. This implies that the expected cost to completion of
the next stage is affected by the learning that occurs in the immediately preceding stage, and
undue delays that may occur in a development stage negatively affect the initial expected
costs to completion of the following stage. Likewise, if a stage is developing faster and at a
lower cost than expected, then the expected cost to completion of the following stage will
also decrease, even though this next stage has not yet begun. The information about the
actual cost and timeliness of a particular stage i is conveyed by the random component σidzi
of the cost diffusion process. In addition to the process described by Equation 4, for any two
consecutive stages i and i+ 1 we will also have in stage i the process described by Equation
5:

dKi+1 = σi+1dzi+1 τi−1 < t < τi (5)

where ρdt = E[dzidzi+1] is the instantaneous correlation between dzi and dzi+1. The
expected cost to completion of stage i+1 will be updated during the time period τi−1 < t < τi
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prior to the beginning of this stage through the correlation between the two processes, even
though stage i+ 1 has not yet begun.

3.2. Learning

The firm may abandon the project at any point in time, including during any particular
stage up to the beginning of the market phase. At each instant it assesses the expected
value of the project given the actual costs incurred up to then, the expected final quality
level conditional on the deviation from the expected times to completion and the value of
the future expected cash flow that will be generated by the project. The probability that
the project may suffer a sudden and catastrophic ending is also taken into account and
factored into the final value of the project. A negative value indicates that the expected
future revenues will be insufficient to cover the actual and expected costs and the firm will
be better off if it abandons the project at that point. If this value is positive, then the firm
continues on until the next instantaneous exercise time when it again repeats this analysis
with updated information.

Once all stages are successfully completed and the product is ready to go to market at
t = τn, the firm has one final opportunity to abandon the venture prior to the beginning
of the market phase. This option to abandon will only be exercised if the expected value
of the future project revenues net of any capital expenditure investment required for the
production of the final goods is negative, since all prior costs incurred to develop the project
are now sunk costs. The level of the capital investment at t = τn will depend on the nature
of the R&D venture, ranging from low for intellectual property goods such as software and
pharmaceutical drugs, to high for technologically complex products such as aircrafts and
microprocessors.

As the product is brought to market, the firm immediately begins to analyze possible
enhancements into derivative products and product extensions in order to capture additional
market segments that may not have been targeted initially. The value of this expansion op-
portunity is a function of the actual performance of the current product in the market, which
must be sufficiently large to warrant the additional investment required for the expansion.
We assume that the investment cost required to implement the expansion is a fraction of the
total costs originally incurred to develop and manufacture the product and involves little or
no uncertainty.

3.3. Learning

During the design phase and prior to the beginning of the project, the firm defines a
set of technical specifications that the completed product is expected to achieve. This may
include, for example, the sustainable generating output of a power plant, the cruising speed,
consumption and maintenance cost of an aircraft, the reliability of a complex system, the
clock speed of a processor chip or the effectiveness of a drug against a particular ailment.
Once the project is initiated and investment begins, the firm obtains information that allows
it to revise these expectations to adjust them to the facts that are being uncovered by the
research, development or construction that is taking place. For example, the actual speed
and maneuverability of a new oil tanker or submarine are only known with certainty in the
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final stage of the project, when the vessel undergoes extensive testing under actual working
conditions in what is known as “sea trials”. Shipbuilders are typically rewarded for exceeding
specifications and penalized for not meeting them, so the actual performance or “quality” of
the finished product can have a significant impact on the expected cash flows of the project.
For the purposes of this paper, we use the term “quality” as a single measure to refer to
the overall performance characteristics that impact on the cash flows that the project is
expected to generate in the future. Extending the model to include additional measures of
performance is straightforward.

We now define our quality model in more detail. The firm exogenously determines
the time zero expected quality of the final product, conditional on the evolution of the
investment stages of the project, which may be actual construction phases or R&D stages.
As more information becomes available and the firm learns about the ease or difficulty of
completing each stage, the firm updates this expectation. We assume that an increase in the
time and cost to completion of a stage from the original estimate indicates that unforeseen
problems and difficulties are negatively affecting the project and the quality of the final
product will suffer. Conversely, a stage that is completed quicker and at a lower cost than
expected indicates that difficulties are being resolved efficiently and that the final quality
of the product will be higher than initially expected. In all, the quality is affected by the
learning that occurs in each stage, and if there is no deviation from the expected costs, then
no learning occurs and the initial quality level assessed remains unchanged. This implies
that this stochastic variable has no drift, although random events may affect the quality of
the final product.

The expected final product quality at time zero is E0[Q̃(τn)] where Q̃(τn) is the (uncer-
tain) quality of the final product at the end of all the R&D stages. During each stage i the
firm assesses its expectation of the quality of the final product based on the learning that
occurs in that stage. Although this assessment is done continuously, we assume that the
firm only updates its expectation of the quality Eτi [Q̃(τn)] at the end of each stage, after
all the information for that particular stage becomes available. This updated expectation is
then the starting point for the quality assessment during the next stage. This process ends
at t = τn when the actual value Q(τn) = Eτn [Q̃(τn)] is finally determined.

We model the quality process Q̃(τn) as a function of a diffusion process Q̃(t), 0 ≤ t ≤
τi − τi−1, fluctuating stochastically within the interval [0, 1], which acts as an absorbing
barrier. We define the stochastic variable S(t) as a driftless random walk over (−∞,+∞) as
shown in Equation 6, which is negatively correlated with the deviations from the expected
investment costs associated with each stage i as defined by Equation 4. This is in keeping
with the assumption that the expected quality must remain unchanged if no learning occurs
during the development stages.

dS(t) = σS(t)dzS (6)

where ρSdt = E[dzSdzi], i = 1, 2, ...n, ρS ≤ 0 is the instantaneous correlation between
dzS and the Wiener process dzi from Equation 4, and S(0). We assume that the expected
quality at the end of stage i Eτi [Q̃(t)] is a function of S̃(t) as specified in Equation 7, where
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t = τi − τi−1 and which assures that Eτi [Q̃(τn)] remains within the range of [0, 1].

Eτi [Q̃(τn)] = 1− exp
(
eS(t) log

(
1− Eτi−1

[Q̃(τn)]
))

(7)

We take the deviations between the actual and expected costs in each stage as a proxy
for the learning that occurs during each R&D stage. At the end of stage i, the expected
quality of the final product Eτi [Q̃(τn)] will then be a function of the initial expected quality
level Eτi−1

[Q̃(τn)] of the previous stage and the correlation of S̃(t) with the deviations from

the expected investment costs E0[K̃i], and the only source of drift from the expected value
of S̃(t) will come from the correlation with the deviations in cost. As information flows and
learning occurs, the quality expectation is updated at the end of each stage and Eτi [Q̃(τn)]
becomes the revised expectation for the quality of the final product. The process is repeated
for each stage until all development stages are completed and the final product quality is
determined.

If actual R&D costs are the same as the expected costs for a particular stage, then
no learning has occurred, S(t) remains at the zero level and the expected quality remains

constant since eS(t) = 1 and Eτi [Q̃(τn)] = 1−
(

1− Eτi−1
[Q̃(τn)]

)
= Eτi−1

[Q̃(τn)].

If product development is progressing at a fast pace with no major hurdles in a particular
stage, the actual time and costs of this stage will be less than expected and the cost deviation
will be negative. S(t) will then increase and become greater than zero, and the expected
final quality will be revised upwards. For very high values of S(t) we have eS(t) →∞

On the other hand, if the R&D stage takes longer than expected and costs increase
beyond the expected costs for this stage, the deviation will be positive and S(t) will decrease
in value and become negative. This will cause a similar decrease in the expected quality
of the product, indicating that unforeseen problems are hampering the R&D efforts and
that product quality will suffer. For large cost overruns the corresponding decrease in S(t)
may result in large negative values of S(t) and we will have eS(t) → 0 and Eτi [Q̃(τn)] =

1−
(

1− Eτi−1
[Q̃(τn)]

)0
= 0.

With this model, the stochastic quality of the final product evolves endogenously, span-
ning all stages of the project. The value function of the project must then incorporate this
uncertainty, in addition to the uncertainty in the investment cost, risk of catastrophic failure
and market demand for the product. This is done by multiplying the initial cash flows of
the market phase by the quality factor Ω, which we define in Equation 8.

Ω =

(
Q(τn)

E0[Q(τn)]

)θ
(8)

where θ ≥ 1 is the sensitivity of the initial market cash flows to deviations in the quality
of the final product. The sensitivity parameter θ can be used to calibrate the model to
reflect the expected impact of the product quality on the value of the project.
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3.4. Risk of Catastrophic Failure

At any time, including in the market phase, the project may be rendered worthless due
to a preemptive move by a competitor, loss of the technical capability required to undertake
the necessary research such as the loss of strategic personnel, or changes in regulations that
may require the firm to withdraw the product from the market. The firm may also be forced
to abandon its research efforts due to new safety concerns. Changes in the political and
social climate may prohibit certain types of research or force the firm to forego their patent
protection, such as the ban on stem cell research in the US or the loss of patent protection
due to a life threatening epidemic outbreak. If such an event occurs, for whatever reason,
the result is that the value of the project for the firm goes instantly to zero.

We model this uncertainty with a Poisson process, where at any time t the probability
of a catastrophic event occurring in the next small interval of time dt is λdt. Suppose
a project producing a cash flow of P in perpetuity is subject to this uncertainty. Then,
the probability that it will continue for the short time period dt is 1 − λdt. The value of
the project is V (P ) =

∫∞
0
E[P ]e−rtdt, where E[P ] = (1 − λdt)nP , and (1 − λdt)n = e−λt.

Substituting in the value function, we arrive at V =
∫∞
0
e−λtPe−rtdt = P

r+λ
. Therefore the

impact of the probability of a catastrophic event that suddenly ends the project is equivalent
to an increase in the discount rate by an amount λ. If this value is different for each of the
development stages, we then represent this uncertainty as λi, where i represents the ith stage.

3.5. Market Phase

Once all the R&D stages are successfully completed at t = τn and the product is approved
for release, the firm has the final option to bring the product to market or to abandon the
project altogether. Bringing the product to market entitles the firm to an uncertain cash
flow stream for the duration of the market phase whose value at t = τn is C̃(τn, Q(τn)). At
this point, except for cases where significant capital expenditures are required to begin the
manufacture of the final product, all investment costs already been irreversibly expended,
so only the expectation of a negative net cash flow stream would lead the firm to abandon
the project.

The initial level of these cash flows C(τn, E0[Q(τn)]) at the start of the project (t = τ0)
is exogenously defined and reflects the firm’s expectation of the commercial success of the
developed product and final product quality. These cash flows are subject to systematic
risk over market uncertainties concerning pricing and demand for the final product, and are
assumed to evolve according to a Geometric Brownian Motion diffusion process with growth
rate of α and volatility of σC as the project progresses through the development and market
phases, as shown in Equation 9. At any point in time they represent the net cash flows that
would accrue to the firm were the project instantaneously completed at that time.

dC(t) = αC(t)dt+ σCC(t)dz τ0 < t < τm (9)

While the firm does not receive any cash flows until the project is completed, it up-
dates this value during the investment and development stages as it observes the market
and obtains more information about the true potential of the product. The information
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imparted by this variable also impacts the project value and the firm’s optimal investment
and operational strategies.

Given that it takes time to develop and complete the project, the actual level of the cash
flows that will occur during the market phase is uncertain and will depend on how soon the
project will be completed, among other factors. While the firm can observe the level of these
cash flows at any time, it only starts to receive them when, and if, the project is completed
at t = τn.

Under market equilibrium, the risk adjusted rate of return of the firm’s shares according
to the CAPM is µ = r+ϕσρm,S where r is the risk free rate, ϕ is the market price of risk, σ
is the volatility of the stock returns, and ρm,S is the correlation between the returns of the
market and that of the stock of the firm. We assume that the project is typical of all the
projects of the firm and thus the stochastic changes in the value of the project are spanned
by the firm’s stock so that the volatility of the project is the same as the volatility σ of the
stock, and the risk adjusted discount rate for the project market cash flows is also µ.

If we consider only the net revenues associated with the original product assuming that
the project offers no managerial flexibility during the market phase, the value of the project
at any time t during the market phase can be determined by simply taking expectations and
discounting at the risk adjusted discount rate µ as shown in Equation 10, where τn < t < τm.
This is also the standard value that is obtained from the traditional discounted cash flow
method.

V (C, t) = Et

[∫ τm

t

C(τ)e−µ(τ−t)dt|C(τn), Q(τn)

]
(10)

3.6. Option to Expand

Once a project is successfully completed, the firm engages in the market phase where it
begins to manufacture the product and receive the net revenues associated with its sales. The
firm may also choose to continue research on the product beyond the R&D stages in order to
develop derivative products and/or additional markets segments. This presents the firm with
an opportunity to expand the original market with tailored versions of the product and to
develop extensions of the basic product. This is standard practice in the software industry
where, for example, lower priced “academic” versions with fewer features are developed
for the student market, after the full feature “professional” versions targeted towards the
corporate market are launched. In the aviation industry, successful aircraft models may be
modified for “long range” performance or “stretched” to accommodate increased passenger
payloads. In the movie industry a successful film will be a likely candidate for a sequel, and
a pharmaceutical drug can be modified to target additional markets that were not initially
contemplated.

Usually the firm knows well in advance of the actual development of the product both
the expected benefits and the capital costs involved and also whether such an opportunity
will be available or not for any particular product, and thus we assume that if exercised, the
project value is increased by a factor of κ at a cost of Ψ.
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The decision of whether to exercise the option to expand during the market phase is
modeled as an American type option and the value of this opportunity will be a function of
the cash flow stream generated by the original product, the benefits of the expansion, the
volatility of the project value, the risk free rate, the time to expiration and the exercise cost,
which is the investment required to implement and market the modified product. At each
instant t, τn < t < τm, the firm assesses the expected value of the remaining project cash
flow stream V (t) and compares this to the expected value of the project were the expansion
to take place at that time, V ′(t) = κV (t)−Ψ, net of the required capital investment Ψ and
chooses the greatest of the two. The instantaneous value of the project with the option to
expand during the market phase is then F (t) = maxV (t), V ′(t), τn < t < τm. We assume
that the firm has a single opportunity to exercise the option during the market phase and
does so at an uncertain time t = τE, when V ′(τE) > V (τE).

3.7. Valuation and Solution

As is usual in dynamic programming, we begin by assessing the value function from the
terminal value of the project and work our way backwards. We rely on the equivalent risk
neutral valuation and modify the cash flow diffusion process accordingly while discounting
future cash flows under the risk neutral measure at the risk free rate r, as is standard in the
option pricing literature. The modified cash flow process will be

dC ′(t) = (r − δ)C ′(t)dt+ σCC
′(t)dz τ0 < t < τm (11)

The Bellman equation for the value of this cash flow stream is shown in Equation 12.

rV (C ′, t) = C(t) +
1

dt
E[dV (C ′, t)] (12)

Applying Ito’s Lemma to dV (C ′, t) we obtain

dV (C ′, t) =

(
∂V (C ′, t)

∂t
+ (r − δ)∂V (C ′, t)

∂C ′(t)
C ′(t) +

1

2

∂2V (C ′, t)

∂C ′(t)2
σ2
CC
′(t)2

)
dt+

∂V (C ′, t)

∂C ′(t)
σCC

′(t)dz

Substituting this in Equation 12, we arrive at the value equation 13 that the project
value must satisfy.

1

2

∂2V (C ′, t)

∂C ′(t)2
σ2
CC
′(t)2 + (r − δ)∂V (C ′, t)

∂C ′(t)
C ′(t) +

∂V (C ′, t)

∂t
− rV (C ′, t) + C ′(t) = 0 (13)

The project value is monotonically decreasing due to the cash flows that accrue to the
firm and their shareholder during the market phase, and thus the boundary condition at
t = τm is V (C ′, τm) = 0, which states that the terminal value is zero. The solution to this
partial differential equation is shown in Equation 14, which is the risk neutral version of
Equation 10.

V (C ′, t) = Et

[∫ τm

t

C ′(τ)e−r(τ−t)dτ |C(τn), Q(τn)

]
(14)
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We now include both the option to expand the project and the probability of sudden
catastrophic failure of the project, which is represented by the Poisson death parameter λm.
For simplicity of notation we drop the subscript C ′ of V (C ′, t). If it is optimal to expand
during the market phase we assume this will occur at time t = τE, and the remaining
expected future cash flows would increase by a factor of κ while the project would suffer an
immediate and instantaneous investment cost of Ψ. The value V ′(τE) of the project with
this expansion and also considering the possibility of catastrophic failure would then be

V ′(τE) = E

[
κ

∫ τm

τE

C ′(t)e−(r+λm)(t−τE)dt|C(τn), Q(τn)

]
−Ψ (15)

With this in mind, we can now determine the value of the project at time t = τn, prior to
the beginning of the market commercialization of the product. All the development stages
have been successfully completed and all investment expenses are now sunk costs. If we
ignore any additional capital expenditures, the firm will proceed to market if the expected
value of the market phase is positive. The value of the future cash flows at this point is
then:

V (τn) = E

[∫ τE

τn

C ′(t)e−(r+λm)(t−τn)dt+ F (τE)e−(r+λm)(τE−τn)|C(τn), Q(τn)

]
(16)

At time t = τn the firm gains V (τn) if it continues and nothing if it abandons. Accord-
ingly, the project will be abandoned only if V (τn) < 0. The value of the project will then
be F (τn) = max {V (τn), 0}.

At any time prior to τn, the firm must assess and deduct the expected cost of the
investment still to be incurred from the discounted value of the future project cash flows,
while continuously determining whether is optimal to abandon or to continue investing
conditional on the expected quality of the final product. While this process is continuous,
the expected investment costs, investment rates and other parameters such as cost correlation
across contiguous development stages may be different for each development stage.

At the beginning of the last development stage n at time t = τn−1, the firm must invest
an uncertain amount Kn at an investment rate In in order to complete this stage. The value
of the future project cash flows at t = τn−1 is

V (τn−1) = E

[∫ τn

τn−1

Ine
−(r+λn)(t−τn−1)dt+ F (τn)e−(µ+λn)(τn−τn−1)|C(τ0), Eτn−1 [Kn], Eτn−1 [Qτn ]

]
(17)

and given that the firm will abandon the project if Vτn−1 is negative, the value of the
project at t = τn−1 is F (τn−1) = max {V (τn−1), 0}. As the firm progresses in this devel-
opment stage it updates its expectation of the cost to completion while amounts already
invested become sunk costs, and this new information is then used to optimally exercise the
option to abandon at any time during this stage. As previously mentioned, we assume the
firm only updates its expectation of the quality of the final product at the end of each stage.
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We progress steadily back in time continuously through all the development stages in
the same fashion, adopting the different values for the variables and parameters for each of
these stages. For example, the value of the project during the first development stage will
be

V (t) = E

[∫ τ1

t

I1e
−(r+λ1)(τ−t)dτ + F (τ1)e

−(µ+λ1)(τ1−t)|C(τ0), E0[K1], ..., E0[Kn], E0[Qτn ]

]
(18)

where τ0 < t < τ1. The value of the project at time t is then F (t) = max {V (t), 0}, and
we proceed in this manner until time t = τ0 when

F (0) = max {V (0), 0} (19)

Figure 2 presents the project valuation model where the value of the project is shown at
discrete times at the beginning of each development and market phases of the project.

Figure 2: Dynamic Programming Valuation Model

4. Application: R&D in the Pharmaceutical Industry

Drugs are molecules that present biological activity against a targeted disease. Unfortu-
nately, not all molecules are drugs, so the task of the drug maker is to discover which ones
are. The drug discovery method is an iterative process involving trial and error where a
targeted disease is bombarded with a series of compounds, which are traditionally obtained
from dirt samples, until one is found to be active against it. Then the focus of the search is
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to find what the active molecule in the compound is so that testing it for effectiveness and
toxicity can begin.

Prior to World War II, pharmaceutical innovation was largely the result of luck and
observation, such as the discovery of penicillin from a mold in a bacteria culture by Sir
Alexander Fleming in 1928, or a matter of a chance discovery that a naturally derived
chemical compound happened to be effective for a particular ailment. Aspirin, for example,
which is a purified form of salicylic acid derived from the bark of the willow tree, was first
synthesized in 1853. However, its properties as a painkiller, fever reducing and antiallergic
drug were only discovered much later, and the drug was only introduced by Bayer in 1899.

In the post war years great scientific and medical advances brought about the develop-
ment of antibiotics, hormones and tranquilizers, which by 1965, along with analgesics, were
the four most commonly prescribed drug classes. Since then, the development of pharmaceu-
tical drugs has evolved significantly and has since become an increasingly capital intensive
and risky investment. The advent of biotechnology in the late 1970s created a better under-
standing of key diseases at the molecular level and fundamentally altered the drug discovery
process, as biotech companies rushed to reproduce natural proteins and hormones, such as
human growth hormone and insulin to compensate deficiencies of the body. Genetically en-
gineered proteins and antibodies for treatment of cancer, heart disease, arthritis and other
diseases followed and biotech companies such as Genentech, Amgen and Biogen became
familiar names to investors. Nowadays, the development of a new drug may involve an in-
dependent research lab or an academic institution in the early stages until it is picked up by
a biotechnology firm for further development. But currently only the large pharmaceutical
firms have the expertise and the capital to turn a raw scientific discovery into a useful and
profitable drug.

R&D efforts in the pharmaceutical industry involve significant amount of capital. The
PhRMA association, which represents the leading research-based pharmaceutical and biotech-
nology companies in the United States, estimates that its member companies invested $33.2
billion dollars in 2003 on research to develop new treatment for diseases, on sales of $196
billion dollars [9] .

Before a firm can apply for approval by the Federal Drug Administration (FDA) to take a
drug to market, the firm must successfully complete several well defined research stages and
clinical trials in order to establish its efficacy, safety, dosage and other parameters. Figure
3 shows the required stages for full development of a drug in the United States.

Each of these stages provides the firm with additional information about the medical and
economic feasibility of the compound as an effective and profitable drug, and based on this
information the firm can decide whether to continue or abandon the project. Each stage
carries a significant chance of failure and ultimately only a small fraction of the drugs that
enter into pre clinical testing get to the FDA approval phase. The speed and success rate
at which a drug is developed depends on the difficulties associated with the particular type
of drug and disease and also on the technical competence of the firm, and are assumed to
be uncorrelated with the market.

Typical R&D stages involve the discovery stage, where a new molecule is identified,
synthesized and screened as a potential drug. Most of the potential molecules are abandoned
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Figure 3: R&D Stages for Drug Development, [10]

during this stage, and only about 250 out of 5000 candidate molecules progress to preclinical
trials, where they are then analyzed for pharmacological activity against the targeted disease
and toxicity using animals. If results of this stage indicate that the drug is safe enough to
be tested on humans, which occurs with approximately 5 of the 250 potential drugs that
entered this stage, the firm then files a IND (Investigational New Drug Application) request
to inform the FDA that it intends to enter clinical trials. The Discovery/Preclinical testing
stage is by far the most lengthy and costly of all development stages, consuming roughly
a third of all R&D expenditures involved in the development of a new drug and taking an
average of seven years to complete.

Each of the three stages that comprise the clinical trials involve a growing number of
human subjects and has the objectives of testing the potential drug for safety, appropriate
dosage, negative side effects and of assessing its effectiveness for the intended use in controlled
groups. If all three stages of clinical trials are successfully completed, the firm then files a
NDA (New Drug Application) where it requests FDA authorization to market the drug to
the general population. The data obtained during the clinical trials are the primary source
of the information submitted to the FDA and may run up to 100,000 pages long. Only one
in five drugs that enter clinical trials are eventually approved by the FDA.

Once the project is successfully completed and FDA approval is secured, the drug is
brought to market. As is typical of risky ventures, this step presents the firm with the
opportunity to expand and extend the original market for the product to include additional
patient groups or markets by making improvements and/or modifications to the existing
drug. The feasibility of this expansion will center on the cost of these improvements and the
revenue volume of the existing drug, which in turn is a function of the quality and the market
demand for the drug. Once the market phase is initiated, the firm measures the level of
revenues and decides whether an expansion is warranted. For simplicity, we assume that only
one such opportunity may exist during the patent lifetime of the drug, but this can easily be
extended to incorporate additional expansion opportunities into different market segments
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or applications. Given that the marginal cost of production of intellectual property products
such as drugs is usually small compared to development efforts, it is extremely unlikely that
the firm will abandon a project once development is complete and the product is brought to
market, since the cash flows generated at this stage will almost certainly be positive. Due
to this, during the market phase we only model the option to expand.

An opportunity to expand the project may take many different forms and can offer
significant gains. For example, a drug designed to be delivered in solid form as a pill may be
modified to be administered as an injectable dosage in order to target the hospital market,
which may generate the opportunity to increase project revenues. Likewise, the firm may
extend the target market of a drug to address the requirements of related diseases if the
initial product proves to be successful for the disease for which it was originally developed, or
it can modify the dosage and concentration in order to create a line extension to target the
infant population. Eli Lilly & Co analyzed the feasibility of launching extensions to an anti-
thrombotic drug it was developing against blood clotting that occurs during angioplasty.
The extension would also allow the drug to be marketed for angina pectoris and acute
myocardial infraction depending on how successful it was in the angioplasty market, and the
firm estimated the incremental value from these extensions to be 2 to 2.5 times the value of
the original project. Similarly, having developed a new compound (Tribactan) that increases
the effectiveness of antibiotics, GlaxoSmithKline estimated that market extensions for this
product could increase project value by up to 60% (Real Options Group, 2001). The costs
associated with the decision to expand include the costs of future development, of completing
clinical trials, filing requests with the FDA and implementing additional production facilities.

Although the United States provides a 20 year patent life for a new drug, the average
commercial life during which the firm has exclusive marketing rights is estimated to be 12
years. This is due to the fact that the patent application is usually filed and granted while
the drug is still under development, which reduces the effective patent duration. Increased
competition between research based pharmaceutical companies can reduce the market value
of a drug even further if a similar or more advanced drug for the same ailment is launched
before the expiration of the patent protection. We assume that this possibility is already
considered for in the reduction of project value modeled in the Poisson death process for
catastrophic events; thus we make no further allowance for loses due to competitive strikes.
We assume that once the patent expires, competitive forces will drive prices down to an
equilibrium level where continuing operation will yield no further value creation for the firm
and the project expires at the end of its effective patent life with no terminal value.

For the purpose of applying the ideas developed in our model, we analyze a hypothetical
drug development project involving three development stages, followed by a market phase
equal to the duration of its effective patent protection, where the firm earns a stream of
uncertain cash flows and has the opportunity to expand its operations.

4.1. Expected Results

The industry data and parameters adopted are assumed to be typical of the industry
and are shown in Table 1 (Development Stage) and Table 2 (Market Phase).
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Table 1: Parameters for Development Stage.

Development Stage Stage I Stage II Stage III
Expected Investment Cost Ki 30 50 90
Investment Rate Ii 15 25 30
Cost Volatility σi 10 10 15
Cost Correlation ρ - 0.30 0.30

Table 2: Parameters for Market Phase.
Market Phase Other Parameters
Initial Cash Flow rate C0 35 Expected Quality Level Q 0.80
Cash Flow growth rate α 0.08 Quality Correlation ρQ 0.30
Cash Flow volatility σC 0.30 Quality Volatility σQ 0.40
Duration of market Phase D 12 years Sensitivity to Quality θ 2.0
Risk adjusted discount rate µ 0.15 Risk free rate r 0.05
Expansion Cost ψ 100 Poisson Parameter λ 0.08
Expansion Factor κ 0.50 Number of time steps per year n 9

For computational purposes we divide each calendar year into nine equal time periods
(a finer lattice mesh can be obtained by simply increasing the time step parameter n)
and have the program sequentially scan each possible discrete development path that may
occur, beginning with the shortest and least costly ones. Longer cost paths have decreasing
probability of occurrence, and a cutoff point is required in order to limit the time required
for the computations. While the time step n and the precision parameters chosen provide a
level of discretization that is adequate for the valuation purpose of this application, it may
be coarse for graphic displays and the approximation errors appear as jagged lines in some
of the graphs. Greater detail can be obtained by adopting a finer mesh and higher precision
levels at the cost of increased computer processing times.

We begin our analysis by initially considering only the opportunity to abandon the
project if the prospects of profitable completion are unlikely, and compare this to the results
from the traditional DCF valuation model. Later we incorporate and analyze the impact of
each of the additional features of the model such as the option to expand during the market
phase, investment cost correlations and the uncertainty over the quality of the final product.

Figure 4 shows that the threshold level for the DCF analysis is $23.45 million, and since
the initial value of the cash flow stream is $35 million, the project will no be undertaken.
We can also see that increases in the cost correlation across consecutive development periods
increases the option value of abandonment due to an increase in the volatility of the cost
process. The option to abandon, considering a cost correlation of 0.3, increases the project
NPV to $1.86 million and decreases the threshold level to $31.45 million.

Figure 5 shows the effect of the option to expand will depend on the parameters used.
This shows how changes in the expansion factor (κ) impact the project value for different
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Figure 4: Project Value with Option to Abandon

initial cash flow levels, and we can see that significant increases in value are obtained for
small increments in the expansion factor.

Finally, we note that the initial market cash flow stream, were the project completed
today, is assumed to be $35 million. Under traditional discounted cash flow analysis (DCF),
where no consideration is given to project options, investment cost correlations or product
quality, the value of the project will grow linearly as a function of the initial level of the
cash flow stream once the minimum cash flow investment threshold level is overcome. This
threshold represents the minimum cash flow level at which the firm is indifferent about
whether to invest or not in the project. With the option to abandon, the firm can opt out
of the project if it learns that development is lagging, and thus is able to avoid a potential
loss. This has the net effect of increasing the project value whenever the option is exercised,
which is more likely to occur when the initial cash flow level is close to the threshold level.

5. Conclusions

The analysis of multistage investment problems is a typical application of real options
analysis given the characteristics of a compound option problem. We modeled a R&D invest-
ment problem with multiple sources of uncertainty and compound abandon and expansion
options as a discrete approximation to a continuous time problems using a lattice approach.

We show that the existence of this opportunity to further expand the market revenues
of the finished product once the development stages have been successfully completed can
significantly affect the value of the project and, as a result, the optimal investment decision.
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Figure 5: Initial Cash Flow Level ($millions)

In particular, we show that the option to expand after product development is completed
can increase the project value by an order of magnitude.

Additionally, the uncertainty over the quality of the finished product also impacts the
valuation problem, and is in turn affected by the difficulties that arise from the product
development.

Traditional real options models usually require simplifying assumptions that limit the
complexity of the model in order to maintain tractability of the solution. In the drug
development case presented, the opportunity to expand into new markets adds an additional
level of complexity which is more difficult to model with traditional continuous time methods.

The valuation problem has no closed form solution and was solved using a discrete
lattice approach under dynamic programming. The lattice approach provides an efficient
computation tool to numerically solve the valuation function of the model. Greater precision
can be obtained by adopting a finer mesh for the lattice, which will approach the continuous
time solution at the limit. While the degree of precision must be weighted against the
time necessary for the computations, reasonable approximations can be obtained even with
coarse discretizations. The model presented here is very flexible and can be used as a general
framework to develop more detailed and sophisticated models. It allows for the inclusion of
additional development stage uncertainties, increased numbers of options and the modeling
of government induced industry incentives.
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