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Abstract

Discounting, value and dollar beta matching in flexible cashflow
systems.
The paper applies a real options framework to a value a firm with flexi-

bility to switch between different operational modes. Developing conditions

that are equivalent to smooth pasting, it uses discount factors to capture the

value and beta of each options that is present.

When betas and investment thresholds are known, it shows how to solve

for option values and investment costs. For multiple modes and thresholds,

the paper proposes a matrix based solution that significantly improves com-

putations and intuition.

C61, G31. Key Words; Value matching, smooth pasting, dollar beta and

rate of return equalisation, cashflow networks and bipartite directed graphs.



1 Introduction

When a financial option is exercised, tradeable quantities are exchanged; for

instance upon exercise a call option’s value coupled with the strike price is

swapped for a stock. This is a simple example of the benefit of flexibility

which allows the present value of one cash flow (the certain interest on a

strike price) to be converted into another (the uncertain dividend flow on a

stock).1

This article follows those in the literature on management of real assets,

where there is flexibility to switch between operational cashflow types. Many

articles have made the analogy between operational and financial options,

where capital investment including running costs, is viewed as a strike price

and operational value a stock price.2 These techniques are employed to

evaluate capacity and other investment decisions.3

Although less has been written on the acquisition or creation4 of such

option flexibility, their worth is also based on an exercise condition at invest-

ment. Managers maximise flexibility value by ensuring optimal timing for

these investment decisions. After an investment, if further flexibility remains

(i.e. the use of one option creates another) optimal timing should be driven

by maximisation of the joint value of both initial and subsequent options.

When an option is exercised and an investment transition made, we there-

fore recognise that flexibility is unlikely to end and this article accounts for

the simultaneous application and creation of operational options. Further-

more these follow-on options influence the timing of prior exercise; a decision

to proceed can not be taken without anticipating follow on flexibility and

its optimal decision too. Our valuation procedure tracks sequential flexi-

bility through operating modes, requiring the values at optimal investment

1See Black and Scholes [4], Merton [17]; also Cox, Ross and Rubinstein [7] for the risk

neutral valuation of options.
2See Myers [18], Brennan and Schwartz [5], McDonald and Siegel [16] and the texts of

Dixit and Pindyck [10] and Trigeorgis [24]. Baldwin and Clark [3] with Gamba and Fusari

[14] motivate and value the real options of project design using six principles of modularity

(splitting, substitution, augmenting, excluding, inversion and porting). Latterly these are

valued using multidimensional stochastic processes and methods.
3Including capacity (Pindyck [19]), land (Capozza and Li [6]), costly reversibility (Abel

and Eberly [2] and Eberly and van Mieghem [12]), marginal cost of capital (Abel, Dixit,

Eberly and Pindyck [1]), information (Lambrecht and Perraudin [15]), capital structure

and debt valuation (Sarkar and Zapatero [20]).
4Simple calls (and puts where the exchange is reversed) in financial markets are sold

by option traders to clients for a premium or fee which is designed to cover the hedging

strategy and some profit. In return the client enjoys the financial flexibility described.

Operational or real options are not explicitly purchased in this manner but are embedded

in ownership of any physical asset.
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or divestment times, i.e. when the options are applied and created, to be

tracked.

For an option’s value to be maximised by choice of its decision threshold

and time, so called smooth pasting (or tangency) must also hold. At an

optimal threshold, the value functions of the option and that of the net

payoff must converge (value matching) and at that transition point, do so

tangentially (smooth pasting). That is the two value functions must meet

and join with equal first derivatives there.

When flexibility is exercised at a decision threshold, we make use of the

intuition embedded in the first order condition. Take for example an Ameri-

can style call option on a stock (i.e. one that can be exercised early). At the

critical threshold that represents the optimal exercise point, the derivatives

(slope of functions with respect to the stock price) for both the option and

its payoff must match. The first derivative of an option price with respect to

its stock is known as delta, so this condition says that upon exercise a call

option should have a delta of one (unity being the slope of a call).

Options also have an elasticity, defined as this delta (or slope) multiplied

by the ratio of the stock price to the option price. Although similar to a

profit mark-up (as shown by Dixit, Pindyck and Sødal [11]), we interpret

the option elasticity as a (CAPM) beta relative to its underlying investment.

For instance a call option that is exercised in the money at a critical price

to strike ratio of two, will have a relative beta of two.5 Because it contains

a 2:1 levered position, this means that the local rate of return (or drift) is

double that of the underlying. Thus the option beta (or local rate of return

in Shackleton and Sødal [21]) can be used as a metric in optimal exercise

timing.

When the use of one option generates the creation of another, we apply

value and weighted beta matching to account for their interactions at ex-

ercise. In addition to equations that track the value before and after each

transition, this is done by representing first order conditions including the

beta of options weighted by the dollar value of the options.

The other element required to complete our analysis, is a discount factor

representation of option values.6 This provides both the means to determine

betas and also to link option values that are separated by threshold and time.

Section two gives examples of how dollar beta matching is useful in the

early exercise of American style put and call options, both individually and

when they interact in an operational setting. Section three incorporates

5In the next section a $4 stock price threshold and an option value of $2 commands $4

of stock with $2 of borrowing implicit in the option hedge; this has a relative beta of 2.
6See Dixit, Pindyck and Sødal [11] and Sødal [23] for the discount factor approach.
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interactions with a third threshold and mode, using geometric Brownian to

illustrate and matrix algebra to solve the system. Section four introduces a

fourth threshold and solves a more advanced problemwith two way switching.

Section five concludes.

2 Beta matching and the discount function

2.1 Definition of beta matching with a simple applica-

tion

For an option  ( ) its sensitivity to underlying state variable  is known as

its delta, ∆ ( )  All assets, not just stocks with respect to the market, have

a beta; for options this quantity may be dynamic like delta. This beta, or

elasticity ( ), tracks the sensitivity of  ( ) ( ) an option’s percentage

change to the return  of its stochastic underlying driver  (assumed to

have unit beta). The beta is closely linked to the delta and a third quantity

shown in (1).

∆ ( ) =
 ( )


( ) =



 ( )

 ( )


( ) ( ) = 

 ( )


(1)

The last quantity in (1) is the dollar beta, i.e. the regular beta scaled by

the dollar value  ( ) of the option itself; it measures the dollar impact of

the beta, i.e. weighted by its value and this is equivalent to the delta scaled

by the underlying  .

Since the delta at early exercise of an option has a particular value

(∆ ( ) = 1−1), knowledge of the critical threshold in  implies knowl-

edge of the dollar beta. Furthermore knowledge of ( ) at that point would

then also imply the value of the option value there  ( ) = ∆ ( ) ( ).

There may be empirical situations where  ( ) and optimal exercise deci-

sions are observable; for example in the market for exchange traded American

call or put options. Given synchronous high frequency observations of op-

tions and underlying, close to exercise a local regression of the returns on

 ( ) against  would recover this beta.

If data is not available and  ( ) needs modelling, we will show how

the assumed process for  determines ( ). Typically such modelling also

determines optimal exercise thresholds but in this paper we assume that these

are given first and see what other option characteristics are then determined.

There are two motivations for this assumption; firstly at least in some

empirical contexts, thresholds may be observable. Secondly, along with the

dynamics for  and therefore ( ) from the structures in this paper we show

4



that starting with given thresholds allows values and costs to be derived using

matrix algebra.

Although the objective of stochastic modelling is usually to determine

thresholds from option strikes, the set of thresholds in our system provides

an adequate information set to determine other variables explicitly. The dis-

advantage is that whilst option and strike values can be expressed as a matrix

product of payoff information at thresholds, due to the mixed and non-linear

dependency of payoffs on their threshold and discount rates between thresh-

olds, despite using a matrix system, these thresholds cannot be expressed as

linear algebra of strikes etc.

To partially illustrate this approach, here is an example that shows how

option prices are calculated when thresholds and betas are known ahead of

values and strikes.

To emphasize the prime role of fixed thresholds as a framework they

are numbered e.g. 14 and set numerically to 14 in examples. Whilst

it may seem more attractive to label these with a subscript that denotes

their nature, two points are noteworthy; firstly their ordering is important

and secondly, since a matrix row will come to depend on each threshold,

numbering the thresholds according to their row in that matrix or vector

aides their tracking. Initially only 4 = 4 and 1 = 1 are used; later 3 = 3

and 2 = 2 are added.

To quantify and demonstrate, take an American style call with value7

( ) on a stock  . The delta of this option is ∆ ( ) = ( ) ; multi-

plying this by the underlying price gives the dollar beta, then dividing this

by the option value yields its beta ( ) = ∆ ( ) ( ). Note that an

option’s scale plays a role in its dollar beta but not in its beta.

Suppose upon the stochastic price  reaching the fixed value 4 = $4 we

see this option being exercised; since the delta there is unity ∆(4) = 1 the

dollar beta at this point is $4. We will assume that the location of thresholds

such as 4 are known.

Suppose we also know that the beta (4) at this threshold is 2; if not

measure by regression from market data, then it needs derivation from an

uncertainty and stochastic model (in due course). From these facts we can

infer (4) = $2

(4) = 2 =


( )

( )



¯̄̄̄
=4

=
4

(4)
=
4

2
(2)

7Option values and betas are labelled  ( ) and ( ) but have subscripts that distin-

guish their type,  for calls,  for puts and later  for idle,  for full. Apart from this

labelling, in the GBM case constants   are also used for their particular beta values.
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Typically it is the strike price that is a given and the exercise threshold

4 (4) that is determined as a function of4, but here treating the threshold

4 = $4 and option beta (4) = 2 as given we can infer the implied strike

price 4 (4). At this critical underlying price 4, the call option value

converts into a payoff. With a strike labelled 4 (because it is applied at 4)

and from 4 = $4 we also can infer 4(4) = $2.

(4) = 4 −4 = 2 (3)

(4)(4) = 4 = 4

At this threshold, smooth pasting implies that the slope or delta of the

option and its payoffmatch so that the differential of the first line in (3) at 4
confirms this. However the second line of (3) is a dollar beta representation

(from (2)), where the beta (4) has been applied on the left to ( )

and the unit beta (of  ) to  on the right. At the point of exercise, these

equations say that the beta of ( ) is double that of the underlying and

that the option ($4 of stock net of $2 borrowing) has twice the local rate of

return (or drift) of  in the CAPM world.

As well as a call option to capture revenue once potential value reaches

4 there is an analogous put. The operating argument for puts rests on

the flexibility to suspend operations from running to the idle condition. For

a stand alone American style put ( ) we consider exercise at 1 = $1

Smooth pasting requires a delta at 1 of −1 and (from an uncertainty model)
if we also know the put’s beta is  (1) = −1, we can infer the put value
itself (1) = $1 at exercise.

 (1) = −1 =


( )

( )



¯̄̄̄
=1

= − 1

(1)
= −1

1
(4)

Due to the payoff and dollar beta (−1) conditions in the two lines of (5), this
is consistent with an exercise price 1 = $2 for the put (labelled 1 because

it occurs at 1; it is only the same as 4 because  (1) was chosen as −1).

(1) = 1 − 1 = 1 (5)

 (1)(1) = −1 = −1

The first line of (5) smooth pastes with a delta of ∆ (1) = −1 i.e. the put
payoff has unit negative slope. The negative beta indicates a put return or

local drift rate of the risk free less the market risk premium ($2 on deposit

with a $1 liability on the short hedge). The second line of (5) is the dollar

beta matching condition, and given  (1)  1 this is written beneath the
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value matching condition to give it equal status to the value condition (first

line of 5) in jointly determining 1 (1) via linear algebra.

Thus if the betas and thresholds of options are known, they can be used

to infer option prices and strikes at exercise. So far we have not yet utilised

a specific diffusion and   were chosen arbitrarily; these can be deter-

mined for a stochastic flow  and value  that follows a Brownian motion 

geometrically.



=




= ( − ) +  (6)

Under this risk neutral diffusion, if the revenue flow  has drift −  (where

 is the risk free rate and  the yield)  =  follows the same diffusion.8

Claims such as discount factors  ( ) that are contingent on reaching

a certain level must satisfy a Bellman equation. This condition is derived

from the risk neutral expectation of a local change generating a risk free

rate of return over an interval . Applying expectations to the Ito’s lemma

expansion9, we require  [ ( )] =  ( )

For an option claim  ( ) that depends on the proximity of  to a thresh-

old, an asset pricing equation generates option solutions  ( ) ∝   and

 ( ) ∝   Beta constants  =  (for the call) or  =  (for the put)

are given by a quadratic in (7).

0 =
1

2
2 2

2 ( )

 2
+ ( − )

 ( )


−  ( ) (7)

  =
1

2
−  − 

2
±
sµ

 − 

2
− 1
2

¶2
+
2

2

2.2 A two mode case and the definition of discount

factors

As suggested, the put may not be financial but operational in nature and

therefore not stand alone. Now we represent the present value  of revenues

 and costs  whilst option values   represent the flexibility value of

launch or closure decisions on .

8

 =

Z ∞
0

 [ ()] − =
Z ∞
0

− =
h
−

−

i∞
0
=






9Unlike risk neutral, using physical or real world (CAPM) expectations  []

to determine local expected returns of  generates a beta dependent risk premium,

i.e.  [ ( )]  ( ) = ( +  ( ) ∗ risk premium)  However, for the isoelastic
GBM, discounting can occur using CAPM expecations (see Shackleton and Wojakowski

[22]).
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Upon its exercise into an idle state (when the operational value  and

revenue  are sacrificed in return for retrieving, from a prior investment, a

fixed value1), it is possible that the call option to relaunch may be acquired.

The condition at the put exercise point must then embrace the acquisition

of ( ).

On the left hand side of the next equation (8), the put value ( ) is

added to the present value of perpetual revenue  less a present value cost10

1. This sum is foregone upon suspension but a call option to relaunch ( )

is acquired; this goes on the right of equation (8) which matches value when

 = 1.

(1) + 1 −1 = (1) (8)

This differs from (5) because now more flexibility is present. Until the opti-

mal point  = 1 values are dynamic in  and equality only holds at 1.

However up to and including that time, the slopes and betas with respect to

 can be calculated to portray proximity to the first order condition through

betas and dollar betas.

Smooth pasting is akin to examining slopes on either side of such value

equations. Differentiating equation (8) by  (in the limit as it reaches 1)

and multiplying by  represents  ( ) = ( ) ( ) the dollar beta

of  ( ) on either side of (8).11 Therefore as well as (8), if smooth pasting

holds, dollar (or value weighted) betas must match at  = 1 in (9).

 (1)(1) + 11 = (1)(1) (9)

Now compared to (8), the put value ( ) has been weighted by its beta

 ( ), the value of operations  (foregone) by a beta of 1 and the call value

( ) weighted by its beta ( ) Since its beta is zero, 1 has disappeared.

For decisions involving follow on flexibility, smooth pasting demands rate

of return equalisation across value, including acquired options. Optimal ex-

ercise of the put  requires that the sum of dollar betas must match at 1 in-

cluding options acquired , so this call has an influence through ( )( )

at 1.

10This strike or costs might have composition  − 1 where  is a perpetual cost

rate of operations saved on suspension and 1 is a one time and irrecoverable cost that

diminishes these savings. Whilst this paper solves for 1 it is not directly concerned with

the breakdown  −1 and these quantities are shown to motivate 1 only (similarly

for 4 =  +4)
11Taking the beta of the each side of (8), would make sense for the right (( )) but not

for the left hand side (( )+−). The dollar beta operator however produces the sum
of dollar components directly (i.e.  (1)(1) + 11 on the left of 8). This is also im-

portant if an option subject to knock out can attain a zero value (due to complementarity,

in section 4). The dollar beta operator ( ) is robust to this situation.
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Now suppose that this system is closed by the two thresholds 1 4; this

standard hysteresis has been studied before (Dixit [9]). We apply the same

logic at 4 where the call is exercised (not as in (3)) but including recovery of

the put we have motivated for use at 1. Value matching is easy to monitor

by inclusion of the put on the right hand side of (3), and smooth pasting via

the means of dollar beta matching just described (for both options and the

payoffs at the boundary, differentiation and  scaling).

(4) = (4) + 4 −4 (10)

(4)(4) =  (4)(4) + 14

Now equations (8-10) give four conditions for the six unknowns (4)

(1) (4) (1) 4 1 as a function of known thresholds 4 1
and assumed betas (4) (4) (1) (1) Two more conditions are

required, i.e. six in total.

For the threshold pair 1 4 the aim is to include the betas ( ) there

in boundary conditions (such as 8) for use in simultaneous linear algebra

alongside those of value (jointly in 10).

The four conditions presented so far apply at investment or divestment;

the two extra required equations link between these transitions. They involve

a relationship between (1)& (4) and another between (4)& (1)

For a given separation, the means to link the relative scale of option

values at two different transition times (i.e. thresholds) is to use discount

functions. Discount functions are option solutions with a standardised unit

payoff. They also provide the means to determine ( )

The exercise time and life of each option depends on an unknown time

taken for its state variable  to travel from a current value to a given thresh-

old. For time homogeneous problems, valuation can occur using stochastic

stopping time methods. Although the time taken for  to evolve from 1 to

4 is unknown, expectations can be formed with respect to  and its random

continuous discount − where12  () = 4

In common with Dixit, Pindyck and Sødal [11], we consider the present

value of $1 paid at the boundary 4 From the perspective of  = 1 ¿
4 this threshold is far away in both terms of  and time  . Thus the

12To separate them for subscripts indicating fixed thresholds, indices for stopping times

 () indicate a value of the uncertain variable  at time   These are usually omitted for

the initial (known) level  (0) which is abbreviated to  (similarly for ).

For stochastic processes other than GBM, the probability distribution of the stopping

time  can be evaluated and an expected discount factor can be found analytically (see

Appendix); numerical methods are also possible in other cases.
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present value of the future sum is less than $1 but increases13 toward $1 as

 approaches 4.

Excluding changes from cash flows (with present values 4 − 4), the

payoff to timing flexibility at a threshold is taken as the option value. Values

at the option’s thresholds (e.g. (4) or (1)) assume the role of scaling

constants and the functional form of the flexibility value is carried in a mul-

tiplier which is labelled as a discount (4) for the call or (1) for

the put.

Having previously labelled the call  ( )  we now label it ( ) to in-

dicate the flexibility present when operations are in idle mode . The put

 ( ) is relabelled
14 ( ) since it is active when operations are full, hence

 . Discount functions  are labelled with   notation to associate put

or call with full or idle states.

Also more than one call or put may present; this allows labels   (rather

than  ) to identify the state in which the option is active. Furthermore a

third state ( ) is introduced later that contains an option that is neither

uniquely a put nor a call but a combination of ( ) and ( ) and

which therefore cannot be labelled by  or .

For a unit payoff at the random time   conditional on current value 

the valuation of discount 0  (4) 6 1 is given by the risk neutral

expected15, risk free discounted time  when  () = 4

 (4) = 


£
−

¯̄
 () = 4

¤
(11)

The discount factor becomes 1 at the time when  reaches 4 and is stochastic

up to that point. Applied to a dollar payoff at the stopping time, from a prior

point  it gives the present value of a one off future cashflow at an uncertain

time in the future  .

From the perspective of a call ( ) created at 1 the discount function

has fixed value  (1 4) ; the first argument represents the initial point

and the second the final one when the option is used. Until 4 is reached

the discount factor is dynamic in  furthermore the required beta at 4
rests upon the sensitivity of the discount factor with respect to this dynamic

variable. Thus the discount factors in (12) perform two option roles in this

13Note that if the boundary is above  then the discount factor increases with  (call)

but it decreases with  if the boundary to be hit is below (put). This is relevant for the

put’s time  to traverse from 4 down to 1
14Their betas  too are labelled with   but for GBM  =  and  = 
15For a discrete outcome case, if there were risk neutral chances of 1/3 each for the

process stopping at  = 1  = 10 or never stopping ( → ∞) with risk free  = 5% the

expected discount factor is (−05 + −05 + 0)3 = 0519 Discount factors can adapt to

structures where stopping is never certain or where  [ ] is unbounded.
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paper.

( ) =  ( 4) (4) (1) =  (1 4) (4)  (12)

In (12), the first interpretation gives the means to separate an option’s value

at the threshold  (4) from its dynamics  (4) whilst the second shows

the fixed discount factor used to find the initial value of the option as the

expected present value of itself at the next threshold.

Rather than one scaling constant for each option, for a linear algebra

approach two are needed; however one is determined from the other using a

fixed discount (e.g. on the right in 12). The interpretation on the left is used

for calculating option betas.

With option values portrayed via discounting, the end value  (4) can

be treated as a scaling constant. Therefore differentiating the option ( )

or discount function ( 4) (in  ) is equivalent and gives the same beta

function. Since boundary conditions include both value matching and smooth

pasting, from (1) the beta at 1 that is important to rate of return match-

ing can be expressed in ( 4) (first line of 13) and evaluated at certain

thresholds.



 ( )

 ( )


=



 ( 4)

 (4)


=  ( ) (13)

 (1) =


 ( 4)

 (4)



¯̄̄̄
=1

= 

The put depends on a discount factor that increases if  falls toward a lower

threshold 1 6  Its discount factor( 1) applies to $1 paid at a random

time occurring when  falls to 1

 (1) = 


£
−

¯̄
 () = 1

¤
 (14)

From this representation the put value function ( ) is given as a dynamic

fraction of its final value or for (4) a static fraction of  (1)

( ) =  (1) (1) (4) =  (4 1) (1)  (15)

The put value and discount functions have negative slope and beta in  .

Since  (1)   0 differentiating ( ) by  and scaling by 

gives a negative beta; the beta at 1 is necessary for rate of return matching

at the point of put usage 1



 ( )

 ( )


=



 ( 1)

 (1)


=  ( ) (16)

 (1) =


 ( 1)

 (1)



¯̄̄̄
=1

= 
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The asset pricing equation in (7) says that the discount factors  ( ) ∝  

are iso—elastic claims, either depending on a positive or negative power (beta)

 =   1 or  =   0 Their dollar beta is a constant multiple of their

value i.e.  ( )  =  ( ).

Option claims must satisfy no—bubble conditions  ( )→ 0 as  → 0

and  ( )→ 0 as  →∞; these match  to the idle state  (the call) and
 (the put) to  . Both discount factors reach a unit value, but at their own

boundary; (4 4) = 1 and (1 1) = 1

These complete the specification of standard unit discount factor claims

with their constant betas.

 idle (call) discount  6 4 (4) = (4)


 full (put) discount  > 1 (1) = (1)
 (17)

These forms appear in real options paper with GBM processes; they can be

combined to form other discount factors that satisfy boundary conditions

at both of 41 (in section 4, terminology  labels these discounts that

combine  ). The discount factors for other processes are shown in the

appendix.

For the GBM process (6), not only are these betas known at both thresh-

olds, but there are constant inbetween, i.e. for all  the  ( ) =  The only

restriction is that this elasticity should be greater than unity, here we choose

   so that  = 2 Also the put betas under GBM  ( ) =  are constant

and it is also possible to choose    to also match  = −1 which satisfies
its constraint of being negative.

To reiterate, discount functions fulfil two useful roles; first they capture

the dynamics of values and their betas and second they fix the ratio of options

at the time of their creation compared to their use. Even though discount

factors do not appear in the value matching condition, their first property

is used at that instant when smooth pasting or dollar beta matching in the

second line of (10).

Although defined by 4 1 the flexibility system described so far could

not have been solved without the discount factors; these provided both the

means to determine the betas and also to link beginning and end options.

In Table 1, the extra two conditions are in the first panel along side the

two value, two beta matched equations (in the later panels) required to solve

the closed hysteresis system; the solutions (to 3 dp) are on their right (knowns

are in plain text and solutions in bold).

We present these results in this section without demonstrating the numer-

ical method used to calculate them. Before presenting the matrix solution,

we include another possible operating state and intervention point 2. In

12



Type Condition Values (sols in bold)

Discounting
(4) =  (4 1) (1)

(1) =  (1 4) (4)

0190 = 0250× 0762
0119 = 0063× 1905

Value matching
(4) = (4) + 4 −4

(1) + 1 −1 = (1)

1905 = 0190+ 4− 2286
0762+ 1− 1643 = 0119

Dollar  match
(4) = (4) + 4

(1) + 1 = (1)(1)

2× 1905 = −1× 0190+ 4
−1× 0762+ 1 = 2× 0119

Table 1: (4) (1) (1) (4)4 1 and 6 equations

order to do this, a third cashflow mode is included. Whilst this is easy to in-

corporate using a Geometric Brownian motion, the results of this paper also

pertain for other stochastic processes. The advantage of GBM is that the

claims    ( ) are iso-elastic, i.e. the betas are constant for all  . Even if

betas are not constant but depend on  the diffusion dynamics and the so-

lution to its asset pricing equation provide the means to calculate particular

 (1) and (1) etc.

3 A three mode case with power flow and

matrix solutions

For a different function of the cashflow driver  (which still follows (6)), we

now motivate the present value of a third cashflow mode. Before the full state

with cashflow  and value  is launched, suppose that there is operational

flexibility to engage with  the  power of underlying cashflow . This

might arise for instance when a test market is possible during which time the

economies to scale  are different to those in full operations 

For a GBM flow, an expectation of  ()

(a uncertain cashflow  years in

the future raised to power  (0    1)) is also proportional to the power

of the current value ; i.e.  [ ()

] ∝ 

Like that of the full flow ( = ), the perpetuity value for a power of
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cashflows (proportional to  ) has a fixed dividend yield16 with respect to its

flow  Before going to full value  , we thus compare a mode of operations

engaging in a cashflow with value  . Since this occurs with return to scale

 we label this power state gamma with subscript  Options whilst in this

mode are labelled ( )

This mode is beneficial for  ¿ 1 but detrimental for  À 1 so the

new cashflow pattern  is scaled so values of  = $1 =   align there (i.e.

when  = $1 the present value of the power cashflow and full cashflow are

equal   =  at  = $1). Thus  = $1 is also a rough (without option

value) indicator of the desired switching level (however 1 = 1 is maintained

as the lowest threshold where idling commences). The actual switching level

is designated 2 so that the call from idle17 operates from 1 to 2 and the

call within the new gamma state from 2 to 4 In line with the idea of

treating thresholds in a clearly labelled hierarchy, we set 2 = $2 and test

the consequences of this policy.

If 1 has already been encountered and switching out of the full state has

occurred, we assess the implication of switching from idle (zero cashflow but

with non—zero call/idling value ( )) to cashflow  with value   This

occurs when a lump sum PV cost of 2 is sunk; this is a strike price to be

solved (it may compose a perpetual cost rate  and a one time cost 2

but this paper does not treat its decomposition).

We label option values in the power state ( ) operations start in this

mode after  reaches 2 and continue until it reaches 4 there switching to

full occurs and ( ) is acquired. Thus the separation for ( ) is between

2 4 and compared to section 2, the original call from idle has been split

into two separate calls, ( ) and ( ) (hence the need for notation other

than ( )).

Although we label the value of the second call option in the gamma

16The yield 0 on a perpetuity of the power cashflow arises throughZ ∞
0

 [ ()

] − = 

Z ∞
0

(
1
2
2(−1)+(−)−) = 

"
−−0
0

#∞
0

=

0 =  0 where 0 =  −  ( − )− 1
2
2( − 1)

Note that 0    1 implies that 0 lies between  and  all are positive. The PV of

power flows  0 would revert to  for  = 1 or to a constant 1 for  = 0

Finally, note that the beta of the present values of the power of these flows with respect

to the driver  is 





= . Although this does not affect the beta of the options

themselves, due to the presence of a cashflow with value    it is needed in smooth

pasting and dollar beta matching.
17In this section, (12) needs revising to (1) = (1 2)(2)
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cashflow mode ( ) this does not mean that ( ) has dependency on

 (( ) is not proportional to  ). If the uncertainty driver is the same

 and   process (6) throughout then ( ) will be another straight call

( ) with beta also given by  from (7). That is to say under GBM a call

on   still has the same beta as a call on  .18

Using the discount framework, since this extra call also has beta  the

same dynamic relationship between initial and final values hold for ( ) as

( )

 =  ( ) =  ( 4)(4) (2) =  (2 4)(4) (18)

In addition to the four option values in standard hysteresis, note that

another two option values and another strike 2 have been introduced.

When the first call from  idle ( ) is used to get into power mode at 2,

the present value of the power cashflow is acquired along with the second call

( ) (to go from power to full mode). If this operational transition requires

a present value cost 2 (a total cost) then the value matching condition at

2 reflects use of the call from idle into an operational value net of costs plus

the option in the next (power) state 

 (2) =  (2) + 

2 −2 (19)

 (2) =  (2) + 

2 

The second condition in (19) is the dollar beta matching condition at 2 this

says that not only must the values either side of the top line of (19) match

but to do so smoothly i.e. with dollar betas (() ) matching too (note

that the beta of the gamma payoff is  and dollar beta  ). Betas of ( )

and ( ) are both known because the option function takes the same form

in this region  as idle ; however the size of the options there  (2)   (2)

remain unknown.

Now we close the cycle in this section; allowing transfer from power 

mode to full  i.e. from present value of revenue   to  by incurring a

net cost 4 at 4. Thus the total present value cost is 4 (which allows for

the addition of , the saving of  net of another one time friction 4

the net cost being 4 = 4 +  − ; again this decomposition is not

considered). The strike 4 that is consistent with 421 will be calculated.

18That is to say that claims () can either be formulated as functions of  or (say 

where) =    Under GBM,  ( ) and  ( ( )) generate asset pricing equations with

betas  0 that are different, but scaled by  Their solutions  ( ) ∝   and  () ∝ 0

are equivalent because  = 0 ensures that 0 =  0 =   This is true for calls or

puts. The beta elasticity of   is 
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When the power call is used to exit the  mode and enter the  mode,

this generates a value condition (20). This happens at  = 4 when the 

call exercises into full mode, upon which 

4 (the present value of the power

flow) is lost (left hand side) along with (4) but 4 the full present value,

is gained (right hand side). In equation (20), items on the left represent the

power state, including the option  and net present values of the cashflows

there; on the right the full state contains the next option ( ) a put, net

present values of cashflows there less the one strike 4.

 (4) + 

4 =  (4) + 4 −4 (20)

 (4) + 

4 =  (4) + 14

In the first line of (20), all fixed present values have been consolidated on

the right into one sum 4. This equation too must match by dollar beta (4

disappears) and since  =  and  =  we get the second line of (20).

The option (4) is then valued as a function of its discounted payoff

via a discount factor which also produces betas at 41

 (4) = (4 1)(1)  =  (21)

Now we have three value matching equations, three discountings, and

three weighted beta matchings. Given thresholds 1 2 4 present value

cashflows 

4 etc. and discount factors () (used twice), () and betas,

the three value equations, three discounting equations and three weighted

beta equations can all be solved for the following variables (1) (2)

(2) (4) (1) (4) and 1 2 4 These are most easily sum-

marised after describing them in a network or graph using its associated

matrix.

3.1 The three mode problem and the resulting system

of equations

These option value can be placed in a graph or network as in Table 2. The

underlying value of full operations  is mapped onto the horizontal axis,

whilst the vertical axis increases with flows    values    and with

jumps up or down indicating investment or divestment sums. In particular

it is important to track the passage of  toward each of the three thresholds

421 which are marked on the horizontal. At these thresholds, investment

jumps by 421 upward (for a call, incurring a cost but accumulating in-

vestment) and downward (for a put which realises a saving but decumulates

investment). The present value of the cashflow in that mode is shown in each

line and is quantified at the threshold at which it starts or stops.
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From the full state  (in the top row of the network because this mode has

highest cumulated investment) when  reaches 1 from above i.e. moving

from the right to the left, full operations are suspended with loss of present

value revenue 1 = 1 but also with a saving of present value of operating

and transition costs 1 ( −1 to be thought of as the present value of

full running costs less a friction).

In the idle state  (on the bottom row because this mode has lowest

accumulated capital and cashflow), no operational cashflow is present but

there is a call option ( ). This is gained at 1 with value (1) and is

used at 2 where its value is (2)

Due to required investment 2 exercise of the call option from idle, lifts

value upward. This 2 represents the present value of running costs ( in

 the gamma state as well as transition costs 2 i.e. 2 =  +2). In

return for sacrificing (2) and committing this strike, the call in the power

state (2) is gained along with the present value of operations in the power

mode 

2 

This cycle completes with the power state (middle row) but at 4 the

second call option is used with value (4). This is combined with a

third transition cost 4 (this might comprise three items; the cost saving

of stopping power operations  the present value cost of engaging in full

operations − and finally another one off transaction cost 4 so that

4 =  +4 − ).
19 Along with the acquisition of the put option in

the full  state, (4) this completes the augmented hysteresis cycle in this

section (Ekern [13] presents another extension to switching hysteresis, one

with a finite number of transitions that would also admit a matrix solution).

The total value at each stage is given by taking the value of these options

and adding the present value of operations in all states, i.e. ( ) ( ) +

  or ( ) +  in idle, gamma and full modes. The vertical separations

are determined by 421 the total investment and divestment sums (this is

apparent in the Figure in Section 4 which displays solved and interim values

for a four level system); this is where cash is injected into or withdrawn from

the system.20

The nine equations that link the nine variables are summarised in Table

3 and Figure 1 by discounting, value matching and dollar beta matching;

again for the same input parameters    = 2−1 05 and 421 = 4 2 1

19Although the strikes are decomposed with components, the method in this paper only

solves for 421
20Note that horizontal arrows indicate diffusions; these take time to transit and involve

possible movement (left or right) in  . Vertical arrows indicate either investment or

divestment and occur instantaneously at a threshold; these are not reversible other than

by further forward passage through the network and its graph.
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 full flow (1) + 1 ← (4) + 4
↑ −4

 power flow ↓ +1 (2) + 

2 → (4) + 


4

↑ −2

 idle no flow (1) → (2)

1 threshold 2 threshold 4 threshold

Table 2: Investment graph at three thresholds (horizontal) for three state

system (vertical, idle power full). Value matching at investment occurs ver-

tically, diffusion and discounting occurs horizontally.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Total value 
incl. flex

Underlying revenue value P

Two call stages and a put

P+Vf (full inc put)

P (full only)

P^0.5 + Vg (power + flex)

P^0.5 (power only)

Vi (idle inc call)

X1=‐1.469

X2=1.061

X4=0.742

Figure 1: Investments across three mode example with 421 = 4 2 1 for

GBM and power values    = 2−1 05. Table 3 shows the investment
graph whilst this plot shows the idle, power and full flex values with their

investment quantities 421 (value matching occurs vertically at  = 4 2 1).
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Type Condition Values (sols in bold)

Disc

 (4) = (4 1)(1)

(2) =  (2 4)(4)

(1) =  (1 2) (2)

0161 = 0250× 0646
0355 = 0250× 1419
0177 = 0250× 0708

Value

 (4) =  (4) + 4 − 

4 −4

 (2) =  (2) + 

2 −2

(1) = (1)− 1 +1

1419 = 0161+ 4− 2− 0742
0708 = 0355+ 1414− 1061
0646 = 0177− 1000 + 1469

Dol 

(4) =  (4) + 4 − 

4

 (2) = (2) + 

2

(1) = (1)− 1

2× 1419 = −1× 0161+ 4− 05× 2
2× 0708 = 2× 0355+ 05× 1414
−1× 0646 = 2× 0177− 1000

Table 3: (4) (1) (2) (4) (1) (2)421 and 9 equations

(solutions to option and investment quantities are shown in bold). We next

shown the matrix method that was used to retrieve these solutions.

3.2 A matrix based solution

With many option constants and conditions to consider (this method is gen-

eralised to a fourth threshold in Section 4 but can be larger), it is useful to

collect similar items into vectors and then use matrix and vector equations

to represent their linkages.

Given the three discount equations, rather than using one common vector

of values (say V) a more sensible grouping is to separate option values into

one of two vectorsU orWOption values at their beginning threshold (on the

right hand side of a value equation) are put intoU = [(4) (2) (1)]
|

and21 those at their end threshold (left hand side of a value transition equa-

tion)W = [(4) (2) (1)]
|


This allows the value of options at their birth to be expressed succinctly as

a matrix multiplicationD of values at their use, i.e. the relationship between

beginning (left U in 22) compared to the end (rightW in 22) threshold

U = D W⎡⎣  (4)

(2)

(1)

⎤⎦ =

⎡⎣ 0 0 (4 1)

 (2 4) 0 0

0  (1 2) 0

⎤⎦ ⎡⎣ (4)

 (2)

(1)

⎤⎦ 

(22)

Note that the call discount factor () has been used twice, between

intervals 1 2 (idle ) and 2 4 (gamma ) whilst with only one put present

(in the full state ), () appears once (between 4 and 1).

21The transpose of a vector is indicated by | .
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Two other vectors capture the present values of operational cash flows

before option exercise Z = [

4  0 1]

|
and after exercise at each level Y =

[4 

2  0]

|
. These flows are treated as potentially perpetual in nature but

their duration will depend upon the potential exercise and timing of the next

option (when terminated the loss of the flow is accounted by deduction at

the next exercise threshold). Their net effect on the right hand side of () is

captured by Y − Z
Finally the present values of cost rates and frictions in the option strikes

are also grouped into a vector X = [42−1]
|
, collectively in (23), these

vectors represent all three value matching equations, one line for each thresh-

old.

W = U + Y − Z − X⎡⎣  (4)

 (2)

(1)

⎤⎦ =

⎡⎣  (4)

 (2)

(1)

⎤⎦ +

⎡⎣ 4 − 

4



2

−1

⎤⎦ −
⎡⎣ 4

2

−1

⎤⎦ (23)

Assuming 421 represent an optimal policy set of thresholds, with their

first order conditions, the aim is to calculateWUX. This is possible since

vectors ZY and matrix D are all given as functions of 421

To represent the first order conditions, the dollar betas of operational

flows are also required; these are given by βZ = [

4  0 1]

|
and βY =

[4 

2  0]

|
which are combined into βY − βZ = [4 − 


4  


2 −1]|

and used in (24) for dollar beta matching.22

Differentiating the items of (23) line by line in  and then multiplying by

 gives the dollar betas both sides of a value transition. This is succinctly

expressed using two diagonal beta matrices β β defined in (24).

β W = β U + βY − βZ⎡⎣  0 0

0  0

0 0 

⎤⎦⎡⎣ (4)

 (2)

(1)

⎤⎦ =

⎡⎣  0 0

0  0

0 0 

⎤⎦⎡⎣  (4)

(2)

(1)

⎤⎦ +

⎡⎣ 4 − 

4



2

−1

⎤⎦
(24)

In order to separate the option constants inWUX from their (known)

betas, matrices β β were used. These diagonal matrices operate on the

vectors of option values to weight them with their betas. They are evaluated

22Although only the vector βY − βZ is required, matrices β β are given by

β =

⎡⎣ 1 0 0

0  0

0 0 1

⎤⎦ β =
⎡⎣  0 0

0 1 0

0 0 1

⎤⎦ 
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using the option beta in that mode; for GBM the flexibility options are iso-

elastic and have the same beta at both thresholds. Consequently β β

contain either  or  ( and  are both calls with the same function  and

power   1 and  is a put with power   0 with factor on ).

In particular, note that the beta matching and discounting equations do

not involve the transition costs X This is another reason why it is easier to

solve for those at the end. Direct elimination from (22 and 24) givesWU

that are consistent with smooth pasting i.e. dollar beta matching, then (23)

gives X

W = [βW − βUD]−1 (βY − βZ) (25)

U = D [βW − βUD]−1 (βY − βZ)

X = U−W+Y − Z

In the first two lines of (25), an inverse of a matrix combination is applied to a

beta weighted difference (in brackets). The expression Y − Z is a difference
of present values of revenues before and after each transition (one in each

row), however when weighted by their betas βY−βZ it is akin to a rate

of return on this difference so acts like a flow. The matrix β −βD reflects

the net beta of the change in flexibility value, β for the immediateW and

βD in anticipation of the demise of U at the end of the next stopping time.

Thus option solutions WU can be thought of as aperiodic perpetuities on

beta weighted cashflows βY − βZ with annuity factor [βW − βUD]−1
That is to say that their benefit is linked to the cashflow gain carried by

βY − βZ which comes along with random future timing reflected in a

perpetuity factor (an inverse matrix).

As the system cycles through    episodes, the expected timing is car-

ried though this inverse [β − βD]
−1
. Although idle, power and full states

last for different lengths of time, D carries the expected timings and present

value of each through the discount factors embedded. It is this equation (25)

that was used to produce the values in Table 3.

This method can now be extended to encompass four thresholds with two

way flexibility in the power state.

4 Four thresholds & two way flexibility

In this section we illustrate a more complex investment scenario involving the

same interim (power) state  Now as well as the chance to invest further if

things go well there is also the chance to recoup and if the situation worsens

partially divest from full  by rejoining  (rather than  as before). This splits
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 (3) + 3 ← (4) + 4
↓ +3 ↑ −4

 (1) + 

1 ← (2) + 


2 ↔ (3) + 


3 → (4) + 


4

↓ +1 ↑ −2

 (1) → (2)

1 thresh. 2 thresh. 3 thresh. 4 thresh.

Table 4: Investment graph with four thresholds (horizontal) and three states

(vertical). Value matching at investment occurs vertically, diffusion and dis-

counting occurs horizontally.

the put into two, creating a high level put joining  in addition to the one

that returns to the lowest mode; the gamma state  becomes more complex

as a result. The network of investment transitions, is given in Table 4 which

is similar to Table 2 other than retreat (like advance) has two stages. The

middle stage  has reversion on the left (low  = 1 rather than the full) and

the full state  has reversion to the  state at an additional level 3 (upward

moves occur at even thresholds 24 and downward odd 13).
23

Since the power state no longer has a unique direction of propagation (up,

i.e. a call  as in section 3), first we need to construct new discounts, ones

that can accommodate two different diffusion outcomes. This is done with

 discount factors that are subject to knockout features (i.e. where a

claim value of zero is attainable as well as unity). These are combinations

of the simple one way factors already used  (each of which remains

strictly positive). Their betas also require growth factors which we describe

next.

It is more convenient from now on, to use compact notation for elements

that are static and non—dynamic, i.e. to use12 rather than(1 2) 43

rather than (4 3) and 4 rather than (4) etc. However ( 4)

and ( ) will be maintained for quantities that are dynamic in  and not

fixed at a threshold.

4.1 Growth factors and their betas

The two simplest options in Table 3 are the straight call (bottom row) and put

(top row) that can be discounted easily and whose dollar betas are already

known. (These form part of the overall D and beta matrices required in this

section); for the top and bottom thresholds, the value and beta relationships

23Now diffusion from the centre of  is possible to the left or right (double arrow).
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are laid out in (26).∙
4
1

¸
=

∙
43 0

0 12

¸ ∙
3
2

¸ ∙
44
11

¸
=

∙
43 0

0 12

¸ ∙
3
2

¸
(26)

The first (discount) matrix can be inverted to form a growth matrix which

expresses end values 3 2 as a function of 4 1 at the beginning (this

forms part of the overall growth matrix G defined in 38). This has used

inverse discounts in relationships such as 3 = (43)
−1

4 = 344 where

it is understood that the put growth factor 34  1 from 4 to 3 is the

inverse of the discount factor from 4 to 3 (similarly for call). Thus the

subscripts fixing the thresholds, not only determine which thresholds are

under scrutiny but also whether  represents a discount or a growth.
24

Due to the definition of beta, growth factors have the same elasticity as their

discounts; both growth and its dollar beta relationships are shown in (27) for

the simple, non—compound options.∙
3
2

¸
=

∙
34 0

0 21

¸ ∙
4
1

¸ ∙
33
22

¸
=

∙
34 0

0 21

¸ ∙
4
1

¸
(27)

These simple relationships were used directly in section 2, but for the

compound options, growth factors are integral to establishing their betas.

This is because the discount and growth option betas rest upon two possible

payoffs; although only one affects the value at a boundary, both affect its

slope there.

4.2 Two way discount functions and their betas

For the other values  in Table 4, we require discount factors which have

a unit payment at one threshold but are subject to a knockout possibility,

becoming strictly worthless at a second attainable threshold (e.g. when =

1 at a threshold  = 0 or vice versa).

In this section, starting from  = 3 there are two conversion thresholds

of interest 4  3 and 1  3 For conversion at the top i.e. 4 further

24For GBM the call growth factor is 21 = (21)
  1 Not only do we assume

that (12)
−1 = 21 i.e. that inverse discount factors are growth factors with the same

functional form applied to a growth ratio 21, but also implied are relationships which

chain discounts (or growths) together across intermediate thresholds i.e. 1223 = 13

etc. This is possible due to concatenation of two stopping times; one from 1 to 2 and the

other from 2 to 3.

Note that  have different elasticities, 1223 which represents a put at 2 from

1 followed by a call at 3 from 2 has a mixed beta.

23



investment is completed but its complementary divestment option (at the

bottom 1) becomes worthless; the top discount factor  attains 1 at 4
but that at the bottom  attains zero there. At 1 the complementary

divestment activity occurs; it involves the discount  attaining unit value

at the bottom and  becoming zero.

Since  is used at the top of the power state, we use notation , also

three arguments are required  (4 1) ; at the bottom ( 1 4) is

used. Normalised for unit and zero payoffs, in static notation these claims

are subject to payoff or boundary conditions in (28).∙
441 414

141 114

¸
=

∙
1 0

0 1

¸
(28)

The first argument in  ( 4 1) is the current dynamic level of the

state variable  the second a static level (above or below  ) at which the

discount factor becomes one and the third an attainable static level at which

the discount becomes zero. Formally, conditional on current  , these claims

are risk neutral expectations but each subject to an extra condition min

or max for their acceptable path.

[ (4 1) ;  ( 1 4)] (29)

=
£



£
−

¯̄
 () = 4min  1

¤
; 



£
−

¯̄
 () = 1max  4

¤¤
= [ ( 4) ;  ( 1)]

∙
1 −41

−14 1

¸
(1−1441)

−1

We already have two claims  ( 4) and  ( 1) (straight call and put

discount factors without knockouts) that satisfy single conditions. For 4 

  1 the claims ( ) ( ) are linear combinations with coefficients

fixed by the matrix on the right of (29).

For  this values the direct (successful) path via a call from  to 4
less an indirect (and negating) path from  to 1 via the put multiplied by

the call path from 1 to 4 (see Darling and Siegert [8] for complementary

stopping times using a reflection principle).

For  the direct put path is from  to 1 however an indirect call path

from  via 4 then a put from 1 to 4 must be subtracted.

In the valuation of both   these must be scaled by the determinant

of a weighting matrix to account for the discounted round trip, i.e. call from

1 to 4 times put from 4 to 1.
25

25

det

∙
1 −41

−14 1

¸
= 1−1441 = 1−

µ
1

4

¶−
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The effect of (29) is that a discount factor  that pays off $1 at 4
but knocks out and becomes worthless at 1 is a long position (with mag-

nitude (1−1441)
−1) in the call ( ) and a short position (14(1−

1441)
−1) in the put ( ) (the bottom discount  is a weighted put

less a call).

For  as  increases, the value of the straight call increases and that of

the straight put decreases so( ) increases in value until it reaches 1 when

 = 4. Conversely as  decreases, the call decreases and the put increases

its short contribution. As  reaches the knockout level 1 even though

the straight call  still has some residual value (14) this is eliminated by

the negative element from the straight put and the whole claim  becomes

worthless. For similar reasons, ( ) is decreasing in  and achieves 0,1

at 41

Within the power state, these knock out options  are applied to

two possible payoffs; at 1 a value of  (1) will be realised but at 4 a

different value  (4) will result. These components have expected value

 (4 1)4 and (1 4)1 and from the perspective of a dynamic

point  fromwithin this range, in (30) the current expected value of flexibility

is a probabilistic and discount weighted sum of two options (only one of which

can be attained).

 ( ) = [ (4) ;  (1)]

∙
1 −41

−14 1

¸ ∙
4
1

¸
(1−1441)

−1
(30)

 ( ) ( ) = [ (4) ;  (1)]

∙
1 −41

−14 1

¸ ∙
4
1

¸
(1−1441)

−1

These decompositions of  via   makes the dollar betas in the

second line of (30) particular easy to evaluate; since the new discount factors

are a linear combinations of the straight put and call, their slopes at any

point  are too. Rescaling the slopes by  gives (30, line two)  ( ) ( )

the dollar weighted beta for ( )

Although under GBM the component betas   of   are fixed, the

weights  (4) and  (1) change with  so in (30) the dollar beta

of claims are not constant weights of  and  (furthermore, the top call with

knock out  is more levered than the straight call  and has a higher

slope and dollar beta;  has a more negative beta than ). Note that

the payoffs 4 1 at 41 are static as are the discounts 1441 in the

weighting matrix and its determinant.

Having valued the option in the power state and its dollar beta through

end outcomes, we can focus on the option values at two particular points

of their creation e.g. 3 2. Since these are static we also annotate non—
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dynamically as items occurring at fixed thresholds, e.g.  (2 4 1) =

241 etc.

Acquisition of ( ) at either of the thresholds 2 or 3 is represented in

(31) at those two particular values of ∙
3
2

¸
=

∙
341 314

241 214

¸ ∙
4
1

¸
(31)

For 341241 in the first column, the first threshold in the subscripts

is either 3 or 2, the second 4 the target or call level and the third e.g. 1
the level at which the flexibility dies or is knocked out (the complementary

options in the second column 314 214 does the opposite; put at 1 but

knock out at 4). In order to work out how 41 depend on 32 this last

equation can be inverted to produce growth factors (32) comparable to (26),

this is easiest to do by decomposing the matrix in (31) using (29).∙
341 314

241 214

¸
=

∙
34 31

24 21

¸ ∙
1 −41

−14 1

¸
(1−1441)

−1

(32)

The inverses of both matrices26 in (32) are applied in reverse order, allowing

4 1 to be expressed from (32) in 2 3∙
4
1

¸
=

∙
1 41

14 1

¸ ∙
21 −31

−24 34

¸ ∙
3
2

¸
(3421 −2431)

−1


(33)

This can be simplified back to a similar form to the standard discounts sub-

ject to knock out. Multiplying the denominator in the determinant’s fraction

by a growth factor4312 (each row of the last equation must also be multi-

plied by 4312 to compensate) and using discount and growth concatena-

tion yields a round trip determinant between 32 (resting on 1−2332 =

(3421 −2431)4312 and the production of a new determinant).

Applying these and evaluating the matrix product yields the simplification

(34)∙
4
1

¸
=

∙
43 42

13 12

¸ ∙
1 −32

−23 1

¸ ∙
3
2

¸
(1−2332)

−1


(34)

26 ∙
1 −41

−14 1

¸−1
=

1

1−1441

∙
1 41

14 1

¸
∙
34 31

24 21

¸−1
=

1

3421 −2431

∙
21 −31

−24 34

¸
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Thus not only are two way discount factors  easily expressed as a

linear combination of standard put and call discounts, but their inverse or

growth functions are too27. The growth elements reflect the value at ex-

treme points 41 as a function of starting from one or other of the interior

points 32, but for these end values the weights are fixed as a function of

the internal points (and the reciprocal of their new round trip determinant

(1−2332)
−1). The resultant growth matrix contains both positive and

negative quantities; these result from the long and short positions present in

the knock out discount factors.

This formulation also holds true for dynamic ( ) i.e. any dynamic

 within the region so another version of (30, line two) of the dynamic

dollar beta ( )( ) is easy to obtain as a function of 34. This version

(35) allows the dollar betas of end option values (in W) to be expressed

as a function of beginning (U) values (while 30 expresses ( )( ) as a

function ofW).∙
44
11

¸
=

∙
43 42

13 12

¸ ∙
1 −32

−23 1

¸ ∙
3
2

¸
(1−2332)

−1

(35)

The dollar betas of all four 4 1 and 3 2 are necessary for smooth

pasting dollar beta equivalency. The growth inversion allows the dollar beta

at one threshold pair to be expressed as a function of values at the other pair

(and vice versa). It is necessary for two way options when the beta matrices

β β are not simple diagonal ones (as in Section 2 and 3).

4.3 Solution and a numerical example

We can now formalise the system for three investment levels with the flexi-

bility to move up or down between idle  full  and intermediate power state

 with elasticity  of an underlying flow.28 We use the same linear algebra

27Eq (30) shows that∙
4
1

¸
=

∙
43 −4223 42 −4332

13 −1223 12 −1332

¸ ∙
3
2

¸
(1−2332)

−1

=

∙
432 423

132 123

¸ ∙
3
2

¸


In the bottom left corner, 132 would normally imply (for a discount) achieving 3 from

a start point of 1 without hitting 2 Because 1 cannot grow to 3 without hitting 2

a similar and literal interpretation is hampered for the growth factor by the relative levels

and the growth matrix contains negative quantities.
28More modes regions can be considered using different 1 2 and more regions etc.

Note that unless two thresholds converge, the up (even) and down (odd) rungs of this
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but vary the matrix and vector contents (from Table 2) in order to extend

the flexibility setup to Table 4. Table 4 summarises no operational value in

the idle state, value that varies with   in the power state and full  (power

1) in the highest state (i.e. flow values varying with 0   and  ).

Starting with the transition at the highest threshold, from power to full,

one investment occurs at threshold 4 with a payoff net of exercise cost of

4 − 

4 − 4. That is to say at the top threshold on going to full, 4 is

gained but 

4 is lost along with incremental investment cost 4

A reversion to the power state is possible at 3 yielding 

3 − 3 + 3

a reverse payoff including a partial return of fixed investment cost 3  4

(this imposes a restriction on a quantity of recoverable capital). After this

two outcomes are possible.

Another downward movement, from the power state to the idle, can occur

at 1; this foregoes flow value 

1 but recoups costs 1.

Finally from the idle state, recovery to the power state is possible at 2
where 


2 is gained at the cost of −1

The value matching conditions within this section and Table 3 are shown

in (36).

W = U + Y − Z − X⎡⎢⎢⎣
4
3
2
1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
4
3
2
1

⎤⎥⎥⎦ +

⎡⎢⎢⎣
4 − 


4



3 − 3


2

− 
1

⎤⎥⎥⎦ −

⎡⎢⎢⎣
4

−3

2

−1

⎤⎥⎥⎦ (36)

Table 4 depicts the graph of the investment network.29 Note that with two

new possible outcomes from the power state ( ) +  , branching of out-

comes is now possible.

From the power state, since reversion to the idle state is possible (at 1)

as well as elevation to the full state (at 4), the discount matrix is populated

with six elements, and in particular two rows now contain complementary

discount factors with mutual exclusivity, i.e. conditional upon each other not

paying off. For example in row three (within the power state) from the point

of view of threshold 3 the element 341 represents the discounted value of

a dollar paid at 4 conditional upon 1 not being reached (where the top

opportunity dies and has zero value).

ladder are different.
29This mathematical graph is bipartite and directed (see Wilson [25]); bipartite in that

investment nodes are either beginning U or endW of state and directed in the sense that

W maps forward (one to one) to U upon value matching and smooth pasting/dollar beta.

Beginning of state values U are linked toW (one to two) by discounting but this also has

a backward i.e. growth interpretation.
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The second 314 in row two is complementary to 341 and pays off

at 1 assuming 4 is not hit (this put is knocked out with zero value if

4 is reached). Other discount factors are interpreted similarly but simple

4312 are one way factors in full and idle states respectively (one way

factors do not knock out for zero value). The detailed discounting equations

U = DW are given in (37) which contains equation (31) in rows two and

three.

U = D W (37)⎡⎢⎢⎣
4
3
2
1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0 43 0 0

341 0 0 314

241 0 0 214

0 0 12 0

⎤⎥⎥⎦
⎡⎢⎢⎣

4
3
2
1

⎤⎥⎥⎦

D =

⎡⎢⎢⎣
0 43 0 0

34 0 0 31

24 0 0 21

0 0 12 0

⎤⎥⎥⎦
⎡⎢⎢⎢⎣

1
1−1441

0 0
−41

1−1441

0 1 0 0

0 0 1 0
−14

1−1441
0 0 1

1−1441

⎤⎥⎥⎥⎦
We also collate elements of G the inverse of D this is the matrix that values

W = GU

W = G U (38)⎡⎢⎢⎣
4
3
2
1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0 432 423 0

34 0 0 0

0 0 0 21

0 132 123 0

⎤⎥⎥⎦
⎡⎢⎢⎣

4
3
2
1

⎤⎥⎥⎦

G =

⎡⎢⎢⎣
0 43 42 0

34 0 0 0

0 0 0 21

0 13 12 0

⎤⎥⎥⎦
⎡⎢⎢⎢⎣
1 0 0 0

0 1
1−2332

−32

1−2332
0

0 −23

1−2332

1
1−2332

0

0 0 0 1

⎤⎥⎥⎥⎦
Now we have assembled two thirds of the equations required to solve the

four level system; the remaining set comes from (scaled) smooth pasting and

construction of β β 

From the value matching condition W = U +Y − Z −X (36), on the

right we use U as a discounted DW and on the leftW as a discounted GU

to produce the first line of (39). Then in the second line of (39), we apply a

vector of dollar beta operator(s) []
0
=
£
() |=4 ; ; () |=1

¤|
i.e. line by line differentiation and scaling by  at each threshold.

GU = DW+Y − Z−X (39)

G0U = D0W+ [Y − Z]0
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The second equation in (39) holds because neither G nor D have diagonal

elements and therefore [GU]
0
= G0U and [DW]

0
= D0W with the line el-

ements of G0D0 operating on them alone. Secondly [Y − Z]0 = βY −
βZ = [4 − 


4  


3 − 3 


2 − 

1 ]
|
gives the dollar beta of the pay-

offs.30

To retrieve the beta matrices (previously in (24) this was done ad hoc),

the forward and back projections for UW in the second line of (29) are

unwound to refine the dollar beta matching set of equations into a form

including β and β suitable for the solution method (25).

G0DW = D0GU+ [Y − Z]0 (40)

βW = βU+ βY − βZ

where in (40) β = G0D and β = D0G are derived from (37 & 38) in

(41)31

D0 =

⎡⎢⎢⎣
0 43 0 0

34 0 0 31

24 0 0 21

0 0 12 0

⎤⎥⎥⎦
⎡⎢⎢⎢⎣

1
1−1441

0 0
−41

1−1441

0 1 0 0

0 0 1 0
−14

1−1441
0 0 1

1−1441

⎤⎥⎥⎥⎦(41)

G0 =

⎡⎢⎢⎣
0 43 42 0

34 0 0 0

0 0 0 21

0 13 12 0

⎤⎥⎥⎦
⎡⎢⎢⎢⎣
1 0 0 0

0 1
1−2332

−32

1−2332
0

0 −23

1−2332

1
1−2332

0

0 0 0 1

⎤⎥⎥⎥⎦
Results for this system under GBM were evaluated for 4321 = 4 3 2 1

with elasticity/beta parameters    = 2−1 05 Figure 2 plots the rela-
tionship between the flexibility values (on the vertical) and underlying 

value and Table 5 summaries the 12 equations and 12 solved quantities (in

bold).

Using one way factors, the system accommodated uncertain stopping (e.g.

in section 3, there was a chance that if  remained high the value of flexibil-

ity would become negligible because switching would cease). With two way

30See section three to form the comparable four by fours β β .
31Rather than the diagonal matrices in (24), for the numerical example in this section,

the beta matrices are:-

β =

⎡⎢⎢⎣
−1 0 0 0

0 3263 −2842 0

0 1895 −2263 0

0 0 0 2

⎤⎥⎥⎦ β =

⎡⎢⎢⎣
2048 0 0 −0762
0 −1 0 0

0 0 2 0

0190 0 0 −1048

⎤⎥⎥⎦ 
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Type Condition Values (sols in bold)

Disc

4 = 433
3 = 3414 +3141
2 = 2414 +2141

1 = 122

0672 = 0750× 0895
0804 = 0550× 1303+ 0196× 0445
0487 = 0222× 1303+ 0444× 0445

0141 = 0250× 0564

Value

4 = 4 + 4 − 

4 −4

3 = 3 + 

3 − 3 +3

2 = 2 + 

2 −2

1 = 1 − 

1 +1

1303 = 0672+ 2000− 1369
0895 = 0804−1268 + 1359
0564 = 0487+ 1414− 1338
0445 = 0141− 1000 + 1304

Dol 
βW =

βU+ βY − βZ

2048× 1303− 0762× 0445 = −1× 0672+ 3
−1× 0895 = 3263× 0804−2842×0487−2134
2× 0564 = 1895× 0804− 2263× 0487+ 0707
0190× 1303− 1048× 0445 = 2× 0141− 0500

Table 5: 4 3 2 1 4 3 2 14321 and 12 equations (note that

 terms have been expressed as combinations)

0

1

2

3

4

5

6

0 1 2 3 4 5

Total
value
incl.
flex

Underlying revenue value P

Two way switching from power to idle & full

P+Vf (full inc put)

P (full only)

P^0.5 + Vg (inc. flex)

P^0.5 (power only)

Vi (idle inc call)

X1=‐1.304

X2=1.338

X3=‐1.359

X4=1.369

Figure 2: Investments across three mode example with 41 = 4 3 2 1 for

GBM and power values    = 2−1 05. Table 3 shows the investment
graph whilst this plot shows the idle, power and full flex values with their in-

vestment quantities 41 (value matching occurs vertically at  = 4 3 2 1).
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discount factors, this system also embraces the potential for different scenar-

ios and branching. Not only is switching uncertain, but it is also unclear in

which direction switching from the power state will go; different sequences

i.e. 2,4,3,1 or 2,1,2,1 etc. are possible.

The advantages of this solution system are apparent. It has building

blocks in the sense that individual cashflow components can be placed in-

dividually within a system that governs their intertwined flexibilities where

a common framework and solution method is available (these could then be

analysed using modularity32). This is an important aspect of sequential in-

vestment. Secondly, although the example has used GBMs, other processes

could be used by replacing the discount/growth components within DG

The merit of the GBM is that its option elasticities are constant which sim-

plifies the formation of β β etc. For 0    1 it also permits the same

option solutions ( ) for all  powers of values and flows 
 

5 Conclusion

Flexibility to time the launch, suspension or other transformation within a

multi threshold policy can be valued using discounted claims on the underly-

ing uncertainty process. Values at the beginning and end of each option’s life

can be separately identified on a network graph and these lend themselves

to such discounting.

Discount factors, with functional forms and betas dependent on assumed

diffusion dynamics, have been used before (Dixit, Pindyck and Sødal [11] and

Sødal [23]) but with limited interaction. By capturing the discounts value

and beta characteristics within matrices, we extend their use allowing many

options within an investment network to interact.

For a set of policy thresholds and a network of transitions between them,

a diffusion choice determines a set of option or timing values. The diffusion

and its discount function also does this via its betas which are incorporated

into the necessary smooth pasting conditions.

Assuming that thresholds are optimally placed to maximise option values,

matrices are used to conduct a linear algebra solution for these values and

the implied option costs.

32Baldwin and Clark (00) [3] and Gamba Fusari (09) [14] motivate and value modularity.

The design rests on six principles; splitting, substituting, augmenting, excluding, inverting,

porting and the implementation is via multivariate least squares Monte Carlo. These are

open to network or graphical investment approaches.
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RN diffusion  Call/put discount functions  quadratic for  

( − )

+

 ( 4) = (4)

:  6 4

 ( 1) = (1)

:  > 1

2

2
 ( − 1)+

( − ) −  = 0

+ 
 ( 4) = (−4) :  6 4
 ( 1) = (−1) :  > 1

2

2
2+

 −  = 0

 ( − ) 

+
 ( 1) =



1


(−2+2+22 2

2
)

(−2+2+221 2
2
)

2

2
 ( − 1)

− −  = 0

Table 6: Discount factors for Geometric, Arithmetic and Mean Reverting

processes.

6 Appendix: Other processes and discount

factors

The same discount outcomes can be applied to other stochastic processes

whose stopping time densities are available; Table 6 shows standardised dis-

count factors for Arithmetic andMean Reverting flows  along with the GBM

claims. Whilst these processes have similar solutions   to a fundamental

quadratic, unlike GBM they are not iso-elastic (constant beta). However the

techniques developed here are robust for processes other than GBM (e.g. the

mean reversion process used in Sarkar and Zapatero [20]).
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