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Abstract 

We study the combined effects of uncertainty and competition on the timing optimization of investments 

in complementarity inputs for non-preemption duopoly (leader-follower) markets with either a weak-

patent system where spillover-knowledge is allowed or a strong-patent system where proprietary-

knowledge holds. We find that, for some input-sequencing investment scenarios, ex-ante and (expected) 

ex-post market shares play an important role on firms’ behaviour, and when uncertainty about the inputs 

cost and revenue are considered together with competition, the conventional wisdom which says that 

“when a production process requires two extremely complementary inputs firms should upgrade (or 

replace) them simultaneously”, does not necessarily hold particularly for the follower. Some of the 

illustrated results show nonlinear and complex investment criteria for both firms.  
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1. Introduction 

Since the pioneering work of Smets (1993), the effect of profit or revenue uncertainty and duopoly 

competition on firms’ investment behaviour has been extensively studied (e.g., Dixit and Pindyck, 1994, 

ch. 9; Grenadier, 1996; Huisman, 2001; Weeds, 2002; Lambrecht and Perraudin, 2003; Paxson and Pinto, 

2005; Pawlina and Kort, 2006; Mason and Weeds, 2010; Femminis and Martini, 2011; Siddiqui and 

Takashima, 2012).
2
 Yet, the existence of complementarity between the inputs of an investment has been 

neglected and, with few exceptions (e.g., Huisman, 2001, ch. 9; Siddiqui and Takashima, 2012), ex-ante, 

firms are assumed to hold one option to invest only.  
 
 

However, firms often use inputs whose qualities are complements, such as computer and modem, 

equipment and structure, train and track, and transmitter and receiver, and, therefore, investment decisions 

on upgrades or replacements must consider the degree of complementarity between the inputs. In this 

work “complementarity” exists if the investment in one input increases the marginal or incremental return 

to other input in terms of “net cost savings” (NCS). More generally, in industrial organization contexts, 

complementarity exists if the implementation of one practice increases the marginal return to another 

practice (e.g., Carree et al., 2010). When the implementation of a technology/practice decreases the 

marginal return to the other technology/practice, there is “substitutability” (or subadditivity).
3
 

The concept of complementarity has been used to study economic decisions in several contexts. For the 

context of a country, it is used to set innovation policies, for instance, the optimization of the balance 

between technology imports and in-house R&D (e.g., Braga and Wilmore, 1991, Cassiman and 

Veugelers, 2004), the allocation of financial resources to industries (e.g., Mohnen and Roller, 2000), to 

enhance innovation and/or to favour clustering (e.g., Anderson and Schmittlein, 1984), and to define 

production policies, for instance, the coordination between product and process innovation (e.g., Miravete 

and Pernías, 2006). 

Research and development (R&D) is another area where the effect of complementarity is taken into 

account, since, when planning R&D activities, firms make strategic decisions regarding the degree of 

complementarity (sometimes called compatibility) between the new products they aim to launch in the 

future and the complement products that are already available in the market or they conjecture will be 

launched by their rivals in the near future, in the sense that the diffusion of an innovation depends, to 

some extent, on the diffusion of complement innovations which amplify its value.
4
 Also, it has been 

                                                 
2 Recent literature reviews on real option game models are provided by Chevalier-Roignant et al. (2011) and Azevedo and 

Paxson (2014). 
3 See Carree et al. (2010) for further details. 
4 In R&D contexts, firms who do not have a dominant market position and intend to grow rapidly tend to managing their R&D 

efforts so as to launch new products which are compatible with those of their rivals who have dominant market positions, firms 

who have dominant market positions tend to guide their R&D efforts in order to launch new products that are, as much as 
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argued that the pace of modernization of industries is often influenced by the degree of technological 

complementarity between the technologies adopted in the industries. For instance, Smith and Weil (2005) 

investigated how changes in retailing and manufacturing industries, together, affected the diffusion of 

new information technologies in the U.S. apparel industry between 1988 and 1992, and suggest that there 

is a significant effect of the degree of complementarity between the technologies that were adopted over 

time on the pace of modernization of interlinked industries.  

The concept of complementarity is also considered in the works of Milgrom and Roberts (1990, 1995), 

which rely on the theory of supermodular optimization and games to analyse economic systems marked 

by complementarity, and Milgrom and Roberts (1994), who study the Japanese economy between 1940 

and 1995 to interpret the characteristic features of Japanese economic organization in terms of the 

complementarity between some of the most important elements of its economic structure; and Colombo 

and Mosconi (1995), who examine the diffusion of flexible automation production and 

design/engineering technologies in the Italian metalworking industry, giving particular attention to the 

role of the technological complementarity and the learning effects associated with the experience of 

previously available technologies.  

Conventional wisdom says that “when a production process requires two extremely complementary 

inputs, a firm should upgrade (or replace) them simultaneously”, i.e., when raising the quality of one 

input it should upgrade its complements at the same time (see Jovanovic and Stolyarov, 2000, p. 15). 

From Milgrom and Robert (1990, 1995) models, we infer that it is relatively unprofitable to adopt only 

one part of the modern manufacturing technologies. Also, in Milgrom and Roberts (1990, p. 524), it is 

suggested that “we should not see an extended period of time during which there are substantial volumes 

of both highly flexible and highly specialized equipment being used side-by-side”, and Cho and 

McCardle (2009) show that the economic dependence that inherently defines cost relationships inside a 

firm can significantly influence the timing of adoption, by expediting or delaying the adoption of an 

improved technology. A good survey on new technology adoption-related literature is provided by Hoppe 

(2002).  

The conclusions above are drawn, however, for market structures where competition and investment costs 

uncertainty are absent. Smith (2005) considers the effects of complementarity and input cost uncertainty 

on firms’ behaviour, yet she neglects competition. Her results suggest that for markets where investment 

costs are uncertain and there is not competition, the conventional wisdom stated above may not hold. 

                                                                                                                                                             
possible, not complement (compatible) with those of rivals. A practical illustration of the later strategy is, for instance, the nine-

year battle between the European Union (EU) commission and Microsoft which culminated in October 2007 with a fine of €497 

million due to a supposed misconduct in developing software that does not allow open-source software developers access to 

inter-operability information for work-group servers used by businesses and other large organizations (see Etro (2007), p. 221, 

and Financial Times, October 23, 2007, p. 1). 
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However, the assumption that there is not competition is unrealistic for most investment decisions. Hence, 

we added to Smith’s model a (leader-follower) competition factor and study firms’ investment behaviour 

for two specific market structures: one where spillover-knowledge is allowed and another where there is 

proprietary-knowledge.
5
 Our results show that when the costs of two inputs, whose functions are 

complement, are uncertain, for instance decrease at different rates, it may pay to invest first in the input 

whose cost is falling more slowly and wait to invest in the input whose cost is falling more rapidly, being 

this behaviour more acute for the follower and slightly different across the two market structures.  

Notice that, due to technological progress and improvements in productivity, input cost decreasing is 

quite common. For instance, the cost of solar power in the U.S. is now 60 percent cheaper than in early 

2011, according to a joint report by the U.S. Solar Energy Industries Association (SEIA) and GTM 

Research
6
, yet the cost of some (preferred) land in the U.S. where to install solar panel farms may have 

increased and, if so, it might have been optimal to invest in the land first and defer the investment in the 

solar panels. Also, wind towers comprise several components (e.g., the tower, rotor hub, blades, etc) 

whose cost growth rates per KW of energy power might be different and, if so, it might be optimal to 

replace the technological components of old wind farms asynchronously - i.e., first the components whose 

cost is decreasing more slowly and later the components whose cost is decreasing more rapidly.
 7
  

We also find that ex-ante and expected ex-post market shares play an important role on firms’ behaviour 

for some input-sequencing investment scenarios. The effect of complementarity between the two 

investment inputs is incorporated in our model using the following inequality:  
12 1 2    , where, 

1  and 

2  are the proportions of the firm’s revenue that are expected to be saved if she operates with input 1 

alone or input 2 alone, respectively, and 
12  is the proportion of the firm’s revenue that is expected to be 

saved if she operates with the two inputs at the same time.  

The rest of the paper is organized as follows. In section 2, we outline the model assumptions, introduce 

the methodology for the derivation of the base-model and characterize the two market structures. In 

section 3, we derive the value functions and investment thresholds for the two firms and each of the 

market structures, and provide some illustrative sensitivity analysis. In section 4, we show some further 

results. In section 5, we conclude and offer guidelines for further research. 

                                                 
5 These market structures are characterized with detail in Section 2. 
6 See http://www.pv-magazine.com/, 20 September 2013. 
7 Se  http://www.windmeasurementinternational.com/   

http://www.pv-magazine.com/
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2. The Model 

Suppose a market comprised of two idle
8
 firms, i and j, considering the investment in two (available) 

complementary inputs (input 1 and input 2), one after the other or both at the same time depending on 

which of these choices maximizes value. Firm i’s instantaneous NCS from the investment in input k is 

given by:  

( )
i jk k kX t D                      (1) 

where, ( )X t  is the market revenue at time t;  0,1k   is the “proportion of the firm i’s market revenue 

that is expected to be saved if she invests in input k”, with   0,1,2,12k  , where “0” means that firm i is 

not yet active and “1”, “2” and “12” mean that firm i operates with  input 1, input 2, or the two inputs at 

the same time, respectively;
i jk kD  is the market share of firm i for when the two firms (i and j) operate with 

input(s) k, where  ,  ,i j L F  with “L” meaning “leader” and “F” meaning “follower”.
 
 

Market revenue, ( )X t , follows a geometric Brownian motion (gBm) process given by:
 9
 

X X XdX Xdt Xdz                         (2) 

where, X  is the revenue growth rate, X  is the revenue volatility and 
Xdz  is the increment of a standard 

Wiener process. For convergence reasons 0Xr    holds. 

Operating with input 1 provides a NCS (
1S ) which is a fraction (

1 ) of the firm i’s revenue ( .
i jk kX D ): 

 1 1 .
i jk kS X D                            (4) 

Since NCS is proportional to revenue and this follows a gBm process, so firm i’s NCS also follows a 

gBm process. Similarly, the use of input 2 alone provides NCS equal to: 

 2 2 .
i jk kS X D                            (5) 

And the simultaneous use of the two inputs yields a NCS equal to:
 10

 

 12 12 .
i jk kS X D                             (6)  

The complementarity between the two inputs,  , with 12 1 2( )       and  0,1  , is ensured by: 

 12 1 2                   (7) 

The cost of the inputs 1 and 2, respectively 
1I  and 2I , also follow a gBm processes, given by: 

                                                 
8 In this research an idle firm means a firm which is inactive or that is active but operating without the most recent production 

input(s). For instance, a firm operating with an old rail train with old tracks is idle in not yet adopting high-speed trains and new 

tracks, if available.  
9 For simplicity of the notation, henceforth, we drop the “t”. 
10 Suppose that a firm can get: a 10% reduction in operating costs per passenger if invests in a new train; 10% reduction in 

operating costs per passage if invests in a new track; and 30% reduction in operating cost if invests in both a new train and a new 

track. Consequently, within a given output range, the more it sells/produces, the more it saves.  
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1 1 11 1 1I I IdI I dt I dz                                 (8) 

and  

2 2 22 2 2I I IdI I dt I dz                                 (9) 

where, 
1I

  and  
2I  are the trend rates of growth of the cost of input 1 and input 2, respectively; 

1I
  and 

2I  are the cost volatility of inputs 1 and 2, respectively; and 
1I

dz  and 
2Idz  are the increments of the 

standard Wiener processes for the costs of input 1 and input 2, respectively.  

Following the framework of Smets (1993), we impose the following constrains on the parameter 
i jk kD , 

where i represents the “leader” and j the “follower”:  

12 0 1 0 2 0 12 1 12 2 12 12 1 1 2 2( ) ( ) ( )
L F L F L F L F L F L F L F L F

D D D D D D D D                                        (10) 

with 12 0 1 0 2 0 1.0
L F L F L F

D D D   , 12 12 1 1 2 2 0.5
L F L F L F

D D D     and  12 1 12 2 0.5,1.0
L F L F

D D  , which ensures that: (i) the leader 

gets 100% of the market share if active alone - regardless of the input(s) she operates with; (ii) the two 

firms get the same market share (50%) if active with the same input(s); (iii) the leader gets more than 

50% of the market share if operates with the two inputs and the follower operates with one input only.
 11 

Additionally, the following condition holds: 1.0
L F F Lk k k kD D   - i.e., if both firms are active the sum of their 

market shares is 100%.  

The “partial differential equation” (PDE) (11) describes the evolution of the value function of an inactive 

firm (i, j) that holds the option to invest in input(s) k:  

2 , 2 , 2 , , ,

2 2 2 2 ,

2 2

1 1
0

2 2 k k k k

i j i j i j i j i j

i jk k k k k

X I k k X I XI X I k k

k kk

F F F F F
X I XI X I rF

X I X IX I
      

    
     

    

                         (11) 

where, 
kXI  is the correlation coefficient between the market revenue, X, and the cost of input(s) k (

kI ) 

and r is the riskless interest rate. For convergence of the solution we assume that 0Xr   . 

An useful analytical simplification of (11) is achieved by taking advantage of the natural homogeneity of 

degree one of the investment problem - i.e., , ,( , ) ( / )i j i j

k k k k kF X I I f X I , where ,

12

i jf  is the variable to be 

                                                 
11 The rationale for this assumption is that the leader gets higher cost savings due to the effect of complementarity between the 

two inputs and is able to use the cost savings advantage to earn a higher market share. Yet, notice that the cost savings advantage 

is eliminated at the moment the follower invests in the second input as well - henceforth the two firms operate the two inputs and 

each gets 50% of the market share. Also, for the sack of simplicity of our analysis in the next sections, we assume that the two 

inputs are symmetric in terms of generation of cost savings, although the model allows for other assumptions on this regard.  
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determined.
 12

 We reduce the dimensionality of the PDE (11) from two to one using the following variable 

change: /k kX I  . 
13

 

Substituting 
k  in (10) yields (11)

 14
  

 
2 , ,

2 ,

2

( ) ( )1
( ) ( ) ( ) ( ) 0

2 k k k

i j i j

i jk k k k

m k X I k I k k

kk

f f
r f

 
      



 
    


                                    (12) 

where, 2 2 2 2
k k k km X I XI X I        . 

Equation (12) is a homogeneous second-order linear ordinary differential equation (ODE) whose general 

solution has the form: 

1 2, , ,( ) ( ) ( )i j i j i j

k k k k k kf A B
                                      (13) 

where 
1  (

2 ) is the positive (negative) solution of the characteristic quadratic function of the ODE (11): 

2

1 1 10.5( ) ( 1) ( ) ( ) 0
k k km X I Ir            .  Solving this equation for 

1  (
2 ) we get: 

2

1(2) 2 2 2

( ) 2( )1 1
( )

2 2

k k k

k k k

X I X I I

m m m

r    


  

   
      

 
 

                           (14) 

Notice that as the ratio of market revenue over cost of input k, 
k , approaches 0, the value of the option to 

invest in input k becomes worthless; therefore in (13) , 0i j

kB  . Using the appropriate “value matching” 

(VM) and “smooth pasting” (SP) conditions for each investment scenario we can determine in the next 

section the constants ( ,i j

kA ) and the investment thresholds for both firms.   

2.1 Industry settings 

We formulate a leader-follower investment problem for two specific industry scenarios, following 

Siddiqui and Takashima (2010, p. 585): (i) symmetric non-preemptive duopoly with “spillover- 

knowledge” (SK); and (ii) symmetric non-preemptive duopoly with “proprietary-knowledge” (PK). The 

difference between these two scenarios is that, in the former, due to a weak patent-protection, the follower 

is allowed to proceed with her first stage investment (in input 1) immediately after the leader’s entry (with 

input 1) and, in the latter, due to a strong patent-protection, the leader invests in the two inputs 

sequentially (in input 1 first and input 2 afterwards, for instance) with the follower inactive.      

 

                                                 
12 See proof in section 1 of Appendix A. 
13 This analytical simplification leads to the following input-related ratios: 1 1/X I  , 2 2/X I   and 12 12/X I  , used in the next 

sections. Notice that 12 ( )I t  is the cost in the two input together at time t, which are assumed to follow a gBm process given by: 

12 12 1212 12 2I I IdI I dt I dz   , where 
12I  is the instantaneous cost growth rate; 

12I  is the cost volatility; and 
12Idz  is the increment of 

the standard Wiener process. 
14 See full derivation in section 2 of Appendix A. 
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2.1.2 Non-preemptive duopoly with SK  

This industry setting considers a duopoly where the leader cannot be pre-empted by the follower in her 

first move. After the leader’s first move, the follower is allowed to proceed, since she obtains knowledge 

on the leader’s investment (input 1) via spillover-knowledge. The diagram in Figure 1 indicates both 

investment approaches for the two firms: sequential-input investment (solid lines) and simultaneous-input 

investment (dotted lines). From state (1,1) the competition for establishing a dominant position resumes 

sequential until the investment cycle is completed in state (2,2).  Similarly, in the direct approach 

(simultaneous-input investment - dotted line), the leader invests first, before the follower is allowed to 

proceed. We add to Siddiqui and Takashima (2010) investment problem the effect of cost uncertainty and 

complementarity between the investments of the two stages. 

Figure 1 – Duopoly’s state transition with SK. Due to SK the follower invests in input 1 before the leader’s 

investment in input 2. The dotted lines in the diagram represent the direct approach where the two firms 

invest, one after the other, in the two inputs at the same time. The solid lines represent the sequential-input 

investment approach for the two firms. *

1L
  and *

1F
  are the leader’s and the follower’s thresholds to invest in 

input 1 alone, respectively; *

1 2L
 

and *

1 2F
 

 are the leader’s and the follower’s threshold to invest in input 2 if 

active with input 1, respectively; and *

12L
  and *

12F
  are the leader’s and the follower’s thresholds to invest in 

the two inputs at the same time, respectively. The information in between brackets refers to the firms’ 

threshold expressions for each stage of the investment, which are derived in section 3.   

                                                               *SK

1L
  (Eq. 58)        *SK

1F
  (Eq. 43) 

          (0,0)                      (1,0)                    (1,1)                                     

                          

                                 
  

            
          

                                 
          (2,0)                       (2,2)                 (2,1) 

                                        

2.1.3 Non-preemptive duopoly with PK 

In this scenario the leader is allowed to invest in inputs 1 and 2, sequentially or simultaneously, with the 

follower inactive, due to proprietary-knowledge. 

Figure 2 – Duopoly’s state transition with PK. The dotted lines refer to the direct approach 

where the two firms invest, one after the other, in the two inputs at the same time; the solid lines 

refer to the scenario where the two firms invest, one after the other, in the two inputs 

sequentially. The notation meanings of the thresholds above are the same as those described for 

Figure 1 above. 

 

 

 

 

 

    *SK

1 2F
 

 (Eq.  35)      *SK

12F
 (Eq.  20) 

*SK

12L
   (Eq. 29)      *SK

1 2L
 

 (Eq. 52) 
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            *PK

1L
  (Eq. 58)                

          (0,0)                     (1,0)                                  

                          

                                 
    

 
 

                        
          

                                 
          (2,0)                        (2,2)                  (2,1) 

                                        

 

 

 

 

3. Analytical Results 

3.1 Simultaneous-input investment  

3.1.1 SK market 

In this section we consider that both firms are inactive at stage (0,0) and invest, one after the other, in the 

two inputs at the same time if optimal to do so. 
12

I  is the cost spent if firms invest in the two inputs at the 

same time.  

3.1.1.1 Follower 

ODE (12), with i F  and 12k  , describes the follower’s value if inactive in a SK market, whose general 

solution is given by:
15

 

1 2F,SK F,SK F,SK

12 12 12 12 12f A B
                                  (15) 

where 
1 (

2 )  is the positive (negative) solution of the characteristic quadratic function of the ODE (12): 

12 12 12

21
( ) ( 1) ( ) ( ) 0

2
m X I Ir            . Solving this equation for 

1 2( )   leads to: 

12 12 12

12 12 12

2

1(2) 2 2 2

( ) 2( )1 1
( )

2 2

X I X I I

m m m

r    


  

   
      

 
 

                          (16) 

where, 
12 12 12 12

2 2 2 2m X I XI X I        . 

Notice that as 12  approaches 0, the value of the option to invest in inputs 1 and input 2 at the same time 

becomes worthless. Therefore, in (15) 12 0B  .  

Using the following VM condition:  

                                                 
15 In (15) the superscripts “F” and “SK” stand for “follower” and “spillover-knowledge”, respectively.  

     *PK

12F
  (Eq. 20)      *PK

1 2F
 

 (Eq. 35) 

      *PK

1F
  (Eq. 64) 

      *PK

1 2L
 

 (Eq. 73      *PK

12L
  (Eq. 29) 
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*

12 12 12F,SK * * *

12 12 12( , ) F L

F

X

X D
F X I I

r




 


                                                      (17) 

With the following economic interpretation: before investing in input 1 and input 2 at the same time the 

follower holds the option to invest whose value is given by the left-hand side of Eq. 17. This option will 

be exercised at the moment her value equals the present value of the cash flows she obtains from 

operating with the two inputs forever subtracted of the investment cost (right-hand side of Eq. 17). 

Dividing (17) by *

12F
I , replacing F,SK *

12 12( )f   by 1F,SK *

12 12A 
 
and rewriting gives, 

1

*SK

12 12 12 12F,SK *SK

12 12 1F F L

F

X

D
A

r


 




 


                                                       (18) 

The SP condition is: 

1
12 12 12( 1)F,SK *SK

1 12 12

F L

F

X

D
A

r




 






                                                      (19) 

Solving together equations (15), (18) and (19) and rearranging we get the follower’s threshold to invest in 

the inputs 1 and 2 at the same time, *SK

12F
 , and the constant F,SK

12A , respectively: 

*SK 1
12

1 12 12 121F

F L

Xr

D

 


 






                                                  (20) 

1(1 )*SK
12 12 12F,SK 12

12

1

F L

X

D
A

r

 

 






                            (21) 

The follower’s value function is given by: 

1F,SK *SK
12 12 1212

F,SK
1212 12 12 12 12 *SK

12 12

                     if 

( )
1          if 

F

F L

F
X

A

f D

r

  

  
 



 


 
 



                                               (22) 

The first row of (22) represents the follower’s option to invest in the two inputs at the same time; the 

second row is the payoff the follower attains from operating in the market with leader (both with the two 

inputs) from *

12F
  until infinity. 

3.1.1.2 Leader 

Assuming that the follower invests in the two inputs at the same time when *SK

12F
  is reached, the leader’s 

payoff at the time of her investment in the two inputs is: 

12

12

L,SK *

12 12 12 12 0 12 12 12 12( , )   
F

L F L L F
F

T
r r

t T
F X I E X D e d I X D e d 

 


   


 



 
  

                   (23) 

where, the first integral represents the leader’s payoff from the instant she invests in inputs 1 and 2 at the 

same time to the instant before the follower invests in inputs 1 and 2 at the same time; *

12L
I  is the costs of 

the two inputs at the time of the investment; and the second integral is the leader’s payoff from operating 
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with the follower (both firms with the two inputs) from the moment the follower invests in inputs 1 and 2 

at the same time until infinity.  

The leader’s value function is given by: 

1

1

L,SK *SK

12 12 12 12

12 12 12 0 12 12 12 12 12 0L,SK *SK12
12 12 12 12 12*SK

12

                                                                     if 

( )
( ) 1         if ,

L

L F L F L F

L F

FX X

A

D D D
f

r r





  

    
   

  



 
    

    
*SK

12 12 12 12 *SK

12 12                                                                 if L F

F

X

D

r

 
 









 


 
 

                             (24) 

The term in the first row is the leader’s option value to invest in the two inputs at the same time; in the 

second row, the first two terms represent the leader’s payoff from operating with the two inputs from *SK

12L
  

until infinity with the follower inactive subtracted of the investment cost, the third term is a correction 

factor which incorporates the fact that in future if *SK

12F
  is reached the follower will invest in input 12 and 

the leader’s payoff will be reduced - it is negative given that 12 12 12 0( ) 0
L F L F

D D    (see inequality 10)
 16

; the 

third row is the leader’s payoff from operating with the follower (both firms with the two inputs) from the 

instant the follower invests in the two inputs until infinity.  

This is a non-pre-emption game and, therefore, the leader enters the market at the moment her payoff is 

maximized. ODE (12), with 12k  , describes the leader’s value if inactive, whose solution is given by: 

1 2L,SK L,SK L,SK

12 12 12 12 12f A B
                                  (25) 

As 
12  approaches 0, the value of the option to invest in inputs 1 and 2 at the same time becomes 

worthless, hence L,SK

12 0B  . The constant L,SK

12A  and the leader’s threshold, *SK

12L
 , are determined using the 

following VM and SP conditions: 

VM condition: 

1

*SK

12 12 12 0L,SK *SK

12 12 1L L F

L

X

D
A

r


 




 


                                           (26) 

SP condition: 

1
12 12 0( 1)L,SK *SK

1 12 12
L F

L

X

D
A

r




 


 


                                           (27) 

Solving together (25), (26) and (27) we obtain ,SK

12

LA and *SK

12L
 , given by:

 17
  

                                                 
16 Notice that this term equals the leader’s loss discounted back from the (random) time at which the follower invests in inputs 1 

and 2. The term 1*SK
12 12( / )

F

   is interpreted as a stochastic discount factor which is equal to the present value of $1 received when 

the variable 12  hits *SK
12F
  (see Pawlina and Kort, 2006, p. 8).  

17 Equation (29) is derived from the equation system comprising (26) and (27) where L,SK

12A  and *SK

12L
 as the unknown variables.  
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1

12 12 0L,SK

12 ( 1)*SK

1 12( )

L F

LX

D
A

r 



  



                                         (28) 

*SK 1
12

1 12 12 0 12 12 0

( )
L

L F L F

Xr

D D

 


  





              (29) 

3.1.2 PK market 

From Figures 1 and 2 we can easily see that “simultaneous-input” investments are one-shot games for the 

two firms and the PK and SK markets. Therefore, the behaviour of the leader and the follower should be 

the same for the two markets.
18

 Consequently, the following proposition holds: 

Proposition 1: 

 L,PK L,SK

12 12 12 12( ) ( )f f   - given by Expression (24)                   (29A) 

F,PK F,SK

12 12 12 12( ) ( )f f   - given by Expression (22)       (29B) 

*PK * K
12 12L L

S   - given by Equation (29)             (29C) 

*PK * K
12 12F F

S   - given by Equation (20)             (29D) 

where, L,PK

12 12( )f   and *PK
12L
  are the leader’s value function and investment threshold for the PK market, 

respectively; and F,SK

12 12( )f  , * K
12F

S  are the follower’s value function and investment threshold for the SK 

market, respectively.  

Proof: see Appendix B.     

3.1.3 Illustrative Results 

Figure 3 - this figure shows the value functions of the leader (expression 24) and the follower 

(expression 22) for the simultaneous-input investment scenario and the SK and PK markets, with two 

levels of market revenue volatility: 20% (left-hand side) and 30% (right-hand side).  

 

                                                 
18 Notice that, in sequential-input investments, the difference between the SK and PK markets is that, in the former, the leader 

completes the two investment stages before the follower is allowed to proceed, whereas in the former, the follower is allowed to 

invests in the first stage (input 1) immediately after the leader has invested in the first stage (input 1).  
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The shapes of the value functions are standard within the real option games literature and, as expected, 

the value functions and investment thresholds of the leader and the follower increase with the volatility.  

Figure 4 - this figure shows the effect on firms’ investment thresholds of changes in the correlation 

between market revenue and the sum of the costs of the two inputs, 
12/X I , (left-hand side) and the 

degree of complementarity between the two inputs,  , (right-hand side) for the SK and PK markets. 

According to proposition 1, the investment threshold expressions for the SK and PK markets are the 

same, we use *12L,SK&PK  and *12F,SK&PK  to represent the investment thresholds of the leader and 

the follower, respectively, for the two markets.   

  

Figure 5 - this figure shows the effect on firms’ investment thresholds of changes in the cost growth 

rate of the two inputs (left-hand side) and the leader’s market share if active with the two inputs with 

the follower (right-hand side), for the SK and PK markets.  

 

The results above show that for both markets, ceteris paribus: (i) an increase in 
12/X I , or  , or 

12I  

accelerates the investment in the two inputs at the same time for both firms, being the follower more 

sensitive than the leader to these changes, particularly for negative levels of 
12/X I and 

12I , and lower 
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levels of   ; and (ii) an increase in 12 12F L
D  delays the investment of the follower and has no effect on the 

leader’s behaviour.     

3.2 “Sequential-input” investment  

3.2.1 SK market 

3.2.1.1 Terminal state: follower 

We start by deriving the follower’s value function and investment threshold for the state where she is 

active with input 1 and the leader is active with both inputs. At this stage the follower’s value comprises 

of the option value to invest in input 2, F,SK

1 2 2( )f 
, plus the cost savings attained from operating with input 

1 forever, 1 1 12 / ( )
F L XX D r  . Following similar procedures as those described in the previous section, we 

get the homogeneous second-order linear ODE (12), with 2k  , whose general solution for has the form: 

1 2F,SK F,SK F,SK

1 2 2 1 2 2 1 2 2( )f A B
                                       (30) 

where 
1  (

2 ) is the positive (negative) solution of the characteristic quadratic function of the 

homogeneous part of equation (12): 
2 2 2

20.5( ) ( 1) ( ) ( ) 0m X I Ir            .  Solving this equation for 
1  

(
2 ) we get: 

2 2 2

2 2 2

2

1(2) 2 2 2

( ) 2( )1 1
( )

2 2

X I X I I

m m m

r    


  

   
      

 
 

                           (31) 

where, 
2 2 2 2

2 2 2 2m X I XI X I        . 

As the ratio of market revenue over cost of input 2, 
2 , approaches 0, the value of the option to invest in 

input 2 becomes worthless. Hence, in (30) F,SK

1 2 0B   .  

Using the following VM condition:  

* *

1 1 12 12 12 12F,SK * * *

1 2 2 2( , ) F L F L

F

X X

X D X D
F X I I

r r

 

 
   

 
                                               (32) 

With the following economic interpretation: before investing in input 2 the follower’s payoff is equal to 

the value of the option to invest in input 2 plus the present value from operating with input 1 forever, with 

the leader active with the two inputs (left-hand side of 32). The option to invest in input 2 is exercised at 

the moment its value equals the present value of the cash flows the follower obtains from operating with 

the two inputs forever subtracted of the investment cost (right-hand side of 32). 
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 Dividing (32) by *

2F
I , replacing by F,SK *

1 2 2( )f 
 and this by 1F,SK *SK

1 2 1 2A    and rewriting gives:
19

 

1

*SK

1 2 12 12 12 1 1 1 12F,SK *SK

1 2 1 2 1F F L F L

F

X

D D
A

r


   






 


 


                                               (33) 

The SP condition is given by: 

1
12 12 12( 1)F,SK *SK

1 1 2 1 2

F L

F

X

D
A

r




 




  


                                                          (34) 

Solving together equations (30), (33) and (34) we get the follower’s threshold for investing in input 2 if 

active with input 1, *SK

1 2F
  , and the constant F,SK

1 2A 
, respectively: 

1 1 1 1 1 12*SK

1 2

12 12 12 1

( )

(1 )

F L

F

F L

X r D

D

    


 


 



                                             (35) 

1

12 12 12F,SK

1 2 ( 1)*SK

1 1 2( )

F L

FX

D
A

r 



  
 






                                                    (36) 

The follower’s value function at the instant she invests in input 1 if inactive (with the leader operating 

with the two inputs), is given by:
 
 

1
1 1 1 12 F,SK *SK

2 2 1 21 2

F,SK
21 2

12 12 12 12 *SK
2 1 2

         if 

( )

1                   if 

F L

F

F L

F

X

X

D
A

r
f

D

r


 

  



 

 









 


 


 
 

                                                (37) 

The first row of (37) is the follower’s payoff from operating with input 1 forever. Its third term is the 

follower’s option value to invest in input 2 if active with the input 1 and the leader is active with the two 

inputs. The second row is the follower’s payoff from operating with the two inputs (with leader) from 

*SK

1 2F
   until infinity.  

3.2.1.2 First state: follower 

Now we derive the follower’s value function and investment threshold for the state where she is inactive 

and the leader is active with input 1. Following similar procedures as those of the previous subsections we 

get the homogeneous second-order linear ODE (12), with 1k  , whose general solution in this case has the 

form: 

1 2F,SK F,SK F,SK

1 1 1 1 1 1( )f A B
                    (38) 

where, 1 ( 2 ) is the positive (negative) solution of the characteristic quadratic function of the 

homogeneous part of equation (12): 
1 1 1

20.5( ) ( 1) ( ) ( ) 0m X I Ir            . Solving this equation for 
1 (

2 ) 

we get: 

                                                 
19 Notice that *

1 2   is the threshold at which the follower invests in input 2 if active with input 1. Therefore, in the VM condition 

we replace the 2  of Eq. (30) by *

1 2F
  .  
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1 1 1

1 1 1

2

1(2) 2 2 2

( ) 2( )1 1
( )

2 2

X I X I I

m m m

r    


  

   
      
 
 

                            (39) 

where, 
1 1 1 1

2 2 2 2m X I XI X I        . 

As the ratio 1 approaches 0, the value of the option becomes worthless, so F,SK

1 0B  . Using the following 

VM condition:  

*

1 1 1F,SK *

1 1 1( , ) F L

F

X

X D
F X I I

r




 


                                               (40) 

With the following economic interpretation: before investing in input 1 the follower’s payoff is equal to 

the value of the option to invest in input 1 (left-hand side of Eq. 40). This option will be exercised at the 

moment its value equals the follower’s present value of the cash flows from operating with input 1 

forever subtracted of the investment cost (right-hand side of Eq. 40). 

Dividing (40) by *

1F
I , replacing F,SK

1 1( )f   by 1F,SK *SK

1 1A   and rewriting gives: 

   1

*SK

1 1 1 1F,SK *SK

1 1 1F F L

F

X

D
A

r


 




 


                 (41) 

The SP condition is: 

   1
1 1 1( 1)F,SK *SK

1 1 1

F L

F

X

D
A

r




 






               (42) 

Solving together equations (38), (41) and (42) we get the follower’s threshold for investing in input 1 if 

inactive, *SK
1F
 , and the constant F,SK

1A : 

*SK 1
1

1 1 1 11F

F L

Xr

D

 


 





                                    (43) 

1(1 )*SK

1 1 1 1F,SK

1

1

F F L

X

D
A

r

 

 






                                              (44) 

The follower’s value function is given by: 

1F,SK *SK

1 1 1 1

F,SK

1 1 1 1 1 1 *SK

1 1

                  if 

( )
1            if 

F

F L

F

X

A

f D

r

  

  
 



 


 
 



                              (45) 

The first row of (45) is the follower’s option value to invest in input 1 if inactive. The second row is the 

follower’s payoff from operating with the leader (both firms with input 1), from 
*SK
1F
  until infinity. 

3.2.1.3 Terminal state: leader 

At the instant the leader invests in input 2,  , her payoff is given by: 
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2

2

L,SK *

1 2 2 12 12 1 2 12 12 12( , )   
F

L F L L F
F

T
r r

t t
t T

F X I E X D e d I X D e d 


   


 




 
  

                       (46) 

where the first integral represents the leader’s payoff from the moment she invests in input 2 until the 

instant before the follower invests in input 2; and the second integral represents the leader’s payoff from 

the moment the follower invests in input 2 until infinity. 

The leader’s value function is given by: 

1

1

1 1 1 1 ,SK *SK
2 21 2 1 2

12 12 12 1 12 12 12 12 12 1L,SK 2
21 2 *SK

1 2

                                                                       if 

( )
( ) 1            

L F

L

L F L F L F

F

L

X

X X

D
A

r

D D D
f

r r





 
  



    


  

 





 


 
   
  
 

*SK *SK
2 1 2 1 2

12 12 12 12 *SK
2 1 2

        if ,

                                                                                     if 

L F

L F

F
X

D

r

  

 
 



 







  







                        (47) 

In the first row, the first term represents the leader’s value from operating with the follower (both firms 

with input 1) forever, the second term is the leader’s option value to invest in input 2 if active with input 

1; in the second row, the first two terms represent the leader’s payoff from the instant she invests in input 

2 until infinity subtracted of the investment cost; the third term is negative, given that 12 12 12 1( ) 0
L F L F

D D    - 

see inequality 10-, and corresponds to a correction factor which incorporates the fact that in future if *SK

1 2F
   

is reached the follower will invest in input 2 reducing the leader’s payoff; the third row represents the 

leader’s payoff from operating with the follower (both with the two inputs) forever.  

This is a non-preemption game, hence the leader, if active with input 1, invests in input 2 at the point her 

payoff is maximized. ODE (12), with 2k  , describes the leader’s value whose solution is given, in this 

case, by: 

1 2,SK ,SK ,SK

1 2 2 1 2 2 1 2 2( )L L Lf A B
                                           (48) 

Following similar rationale as those described in the previous subsections we conclude that ,SK

1 2 0LB   . The 

constant ,SK

1 2

LA   and the leader’s threshold are determined using the following VM and SP conditions:  

VM condition:
 
 

1

*SK

1 1 1 1 1 2 12 12 1,SK *SK

1 2 1 2 1L F L L F

L

L

X X

D D
A

r r


   


 



   
 

                                           (49) 

with the following economic interpretation: the leader, , if active with input 1, should invest in input 2 at 

the moment the value she attains from operating with input 1 forever plus the value of the option to invest 

in input 2 equals the present value of the perpetual cash flow she obtains from operating with the two 

inputs forever subtracted of the investment cost (in input 2).  
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SP condition: 

1
12 12 1( 1),SK *SK

1 1 2 1 2 L F

L

L

X

D
A

r




 




  


                                   (50) 

Solving together (48), (49) and (50) we obtain the constant L,SK

1 2A 
:  

1

12 12 1,SK

1 2 ( 1)*SK

1 1 2( )

L F

L

L

X

D
A

r 



  
 






                      (51) 

and the leader’s threshold: 

1 1 1 1 1 1*SK

1 2

12 12 1 1

( )

( 1)

L F

L

L F

XD r

D

   


 


 



                                    (52) 

3.2.1.4 First-state: leader 

The leader’s value function for this stage is given by: 



1

1

L,SK *SK

1 1 1 1

1 1 1 0 1 1 1 1 1 0L,SK *SK *SK1
1 1 1 1 1*SK

1

1 1 1 1

                                                          if 

( )
( ) 1      if ,

               

L

L F L F L F

L F

F

L F

X X

X

A

D D D
f

r r

D

r





  

    
   

  

 





 
         



*SK

1 1                                          if 
F

 









 


                             (53) 

The first row is the leader’s option value to invest in input 1 if inactive; in the second row, the first two 

terms represent the leader’s payoff from operating alone with the input 1 forever subtracted of the 

investment cost (in input 1), the third term is negative, given that 1 1 1 0( ) 0
L F L F

D D    (see inequality 10), and 

corresponds to a correction factor which incorporates the fact that in future if *SK

1F
  is reached the follower 

invest in input 1 and the leader’s payoff will be reduced; the third row is the leader’s payoff from 

operating with the follower (both with the input 1) forever.  

The leader enters the market at the point her payoff is maximized. ODE (12) describes the leader’s value 

if inactive, whose solution is given in this case by: 

1 2L,SK L,SK L,SK

1 1 1 1 1 1( )f A B
                                 (54) 

Following standard procedures we find out that L,SK

1 0B  . The constant L,SK

1A  and the leader’s threshold 

are determined using the following VM and SP conditions: 

VM condition: 

1

*SK

1 1 1 0L,SK *SK

1 1 1L L F

L

X

D
A

r


 




 


                                               (55) 
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with the following economic interpretation: the leader should invest in input 1 at the moment the option 

value to invest in input 1 equals the value she obtains from operating with input 1 alone forever subtracted 

of the investment cost (cost of input 1).  

SP condition: 

1
1 1 0L,SK *SK

1 1

L F

L

X

D
A

r










                                         (56) 

Solving together (54), (55) and (56) we obtain the constant
1 2

LA 
, given by:  

1(1 )*SK

1 1 0 1L,SK

1

1( )

L F L

X

D
A

r

 

 






                                         (57) 

and the leader’s threshold, given by: 

*SK 1

1

1 1 1 0 1 1 0

( )
L

L F L F

Xr

D D

 


  





                   (58) 

Notice that the firms’ value function and investment threshold to invest in input 2 (rather than in input 1) 

if inactive is the same, only the notation “1” and “2” changes - to save space, we show here only the 

expressions for the case where both firms start the sequential-input investment by input 1.    

Proposition 2: two inactive firms in a non-preemption duopoly (SK and PK) market invest in two 

complementary inputs (input 1 and input 2) sequentially if and only if there is a time t, 0,t  , where 

1( )t  reaches *

1 ( )
L

t  and *

1 ( )
F

t  the first time with *

12 12( ) ( )
L

t t   and *

12 12( ) ( )
F

t t  . 

Proof: see Appendix B. 

3.2.2 Illustrative Results 

Figure 6 - this figure shows the sensitivity of the thresholds of the leader (Eq. 58) and the follower 

(Eq. 43) to invest in input 1 if in a SK market, to changes in the market revenue volatility (left-hand 

side) and the correlation between the market revenue and the cost of input 1 (right-hand side). 

  

The above results show that an increase in the market revenue volatility delays the investment for both 

firms and an increase in the correlation between the market revenue and the cost of the input 1 
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accelerates the investment in input 1. Also, we find that the follower is more sensitive to changes in these 

variable than is the leader, particularly for higher levels of volatility and when the correlation is negative. 

Figure 7 this figure shows the sensitivity of the thresholds of the leader (Eq. 58) and the follower 

(Eq. 43) to invest in input 1 if in a SK market, to changes in the cost growth rate of input 1 (left-

hand side) and the leader’s market share if active with the follower both firms with input 1 (right-

hand side). 

  

The above results show that an increase in the cost growth rate of input 1 accelerates the investment of 

both firms and an increase in the leader’s expected market share if active with the follower with input 1, 

delays the investment of the follower in input 1 and has no effect on her threshold to invest in input 1. 

Also, firms’ thresholds are more sensitive to changes in the cost growth rates of input 1 if this is negative.   

Figure 8 - this figure shows the sensitivity of the thresholds of the leader (Eq. 52) and the follower 

(Eq. 35) to invest in input 2 if active with input 1 in the SK market, to changes in the market 

revenue volatility (left-hand side) and the correlation between the market revenue and the cost of 

input 2 (right-hand side). 
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The results above are similar to those we described for the first-stage of the investment (Figure 6) but the 

differences in the sensitivity of the two firms to changes in 
X  and 

2/X I  are less notorious for this case. 

Figure 9 - this figure shows the sensitivity of the thresholds of the leader (Eq. 52) and the follower 

(Eq. 35) to invest in input 2 if active with input 1, to changes in the degree of complementary (  ) 

between the two inputs (left-hand side) and the leader’s ex-ante market share if she is active with the 

follower with input 1 ( 1 1L F
D ) - right-hand side. 

 

The above results show that an increase in the degree of complementarity between the two inputs 

accelerates the investment in the second input for both firms and an increase in the leader’s (ex-ante) 

market share if active with the follower with input 1, delays her investment in the second input and has no 

effect on the follower’s threshold to invest in the second input.    

Figure 10 - this figure shows the sensitivity of the thresholds of the leader (Eq. 52) and the follower (Eq. 

35) to invest in input 2 if active with input 1, to changes in the leader’s market share if active with the two 

inputs and the follower is active with input 1, 12 1L F
D  (left-hand side) and if both firms are active with the two 

inputs, 12 12L F
D  (right-hand side).  

 

These results show that an increase in the leader’s market share if active with the two inputs and the 

follower is active with input 1, accelerates (asymmetrically) the investment in the second input for both 
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firms, and an increase in the leader’s market share if active with the follower with the two inputs, delays 

significantly the investment of the follower in the second input and has no effect on the leader’s investment 

in the second input. 
20

   

3.2.3 PK market 

3.2.3.1 Terminal state: follower 

From Figures 1 and 2 we can easily see that, for the sequential-input investment scenario, in the terminal 

state with the leader active with the two inputs, the follower’s value function and investment threshold are 

the same for the PK and SK markets. Therefore, the following conditions hold:
21

 

Proposition 3: 

F,PK F,SK

1 2 2 1 2 2( ) ( )f f    - given by Expression (37)   (59A) 

*PK * K
1 2 1 2F F

S    - given by (35)            (59B) 

 where F,PK

1 2 2( )f 
 and F,SK

1 2 2( )f 
 are the follower’s value function to invest in input 2 if active with input 1, 

for the PK and SK markets respectively;  and *PK
1 2F
   and * K

1 2F

S   are the follower’s investment thresholds to 

invest in input 2 if active with input 1, for the PK and the SK markets respectively.  

Proof: See Appendix B. 

3.2.3.2 First state: follower 

In the first-state the follower optimizes the investment in input 1 with the leader active with the two inputs 

(notice that for the SK market, in the first-state, the follower optimizes the investment in input 1 with the 

leader active with input 1). Following similar procedures as those of the previous sections we get the 

homogeneous second-order linear ODE (12), with 1k  , whose general solution has the form:  

1 2F,PK F,PK F,PK

1 1 1 1 1 1( )f A B
                          (60) 

where, 
1 ( 2 ) is the positive (negative) solution of the characteristic quadratic function of the 

homogeneous part of equation (12): 
1 1 1

20.5( ) ( 1) ( ) ( ) 0m X I Ir            . Solving this equation for 
1 (

2 ) 

we get: 

                                                 
20 Notice that the leader’s market share is a complement of the follower’s market share, i.e., 

1 1 1 11
F L L F

D D  , 
12 1 12 11

F L L F
D D   and 

12 12 12 121
F L L F

D D  . Therefore, we could perform the analysis provided in Figures 5 to 10 as a function of the follower’s market 

share.    
21 Notice that for both cases the leader is active with the two inputs and the follower is active with input 1, optimizing the time of 

the investment in input 2. Therefore, F,PK F,SK

1 2 2 1 2 2( ) ( )f f   , and given by Eq. (37), and *PK * K
1 2 1 2F F

S   , and given by Eq. (35).  
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1 1 1

1 1 1

2

1(2) 2 2 2

( ) 2( )1 1
( )

2 2

X I X I I

m m m

r    


  

   
      
 
 

                               (61) 

where, 
1 1 1 1

2 2 2 2m X I XI X I        . 

As the ratio 1 approaches 0, the value of the option becomes worthless, so F,PK

1 0B  . Using the following 

VM condition:  

   1

*PK

1 1 1 12F,PK *PK

1 1 1F F L

F

X

D
A

r


 




 


                (62) 

With the following economic interpretation: before investing in input 1 the follower’s payoff is equal to 

the value of the option to invest in input 1 (left-hand side of Eq. 62). This option is exercised at the 

moment its value equals the present value of the follower’s cash flows from operating with input1 forever 

(with the leader active with the two inputs) subtracted of the investment cost (right-hand side of Eq. 62). 

The SP condition is: 

   1
1 1 12( 1)F,PK *PK

1 1 1

F L

F

X

D
A

r




 






                        (63) 

Solving together equations (60), (62) and (63) we get the follower’s threshold for investing in input 1 if 

inactive, *PK

1F
 , and the constant F,PK

1A : 

*PK 1
1

1 1 1 121F

F L

Xr

D

 


 





                                 (64) 

1(1 )*PK

1 1 1 12F,PK

1

1

F F L

X

D
A

r

 

 






                                           (65) 

The follower’s value function is given by: 

1F,PK *PK

1 1 1 1

F,PK

1 1 1 1 1 12 *PK

1 1

                  if 

( )
1           if 

F

F L

F

X

A

f D

r

  

  
 



 


 
 



                               (66) 

The first row of (66) is the follower’s option value to invest in input 1 if inactive, with the leader active 

with the two inputs. The second row is the follower’s payoff from operating with leader forever - the 

leader with both inputs and the follower with input 1. 

3.2.3.3 Terminal state: leader 

Expression (67) is the leader’s value function for before and after investing in the second input: 
22

 

                                                 
22 As for the previous sections, we assume that the follower invests first in input 1 and then in input 2, although if the reverse 

happens the threshold expressions still hold, only the subscript “1” and “2” would change. We provide, however, sensitivity 

analysis for the case where firms invest in input 2 first and then in input 1 - see Figure 11.  
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1

1

1 1 1 0 L,PK *PK *PK
2 1 1 2 1 21 2

12 12 12 0 1 1 12 1 12 0 1
2 1*PK

1L,PK

                                                          if 

( )
1             if 

( )

L F

L L

L F L F L F

F

X

X X

kK

D
A

r

D D D

r r

f





 
    



    
 

  






   


 
   
  
 


1

*PK *PK
2 1 1

12 12 12 1 2 12 12 12 12 1 *PK *PK2
1 1 2 1 2*PK

1 2

12 12 12 12

( )
              if 

                                                                    

L F

L F L F L F

F F

F

L F

X X

X

D D D

r r

D

r



 

    
   

  

 







 

 
    
  
 



*PK
2 1 2     if 

F
  














 


                             (67) 

In the first row, the first two terms represent the leader’s payoff from operating alone with input 1until 

infinity, the second term is the leader’s option value to invest in input 2 if active with input 1 - with the 

follower inactive (notice in the PK market the follower is allowed to invest only after the leader has 

invested in both inputs); in the second row, the first two terms represent the leader’s payoff from the 

instant she invests in input 2 (operating henceforth with the two inputs) until infinity - with the follower 

inactive; the third term is negative, given that 12 1 12 0( ) 0
L F L F

D D    (see inequality 10), and corresponds to a 

correction factor which incorporates the fact that in future if *PK

1F
  is reached the follower invests in input 

1 and the leader’s payoff is reduced; in the third row, the first term represent the leader’s payoff from 

operating with both inputs from the moment the follower invests in input 1 until infinity; the third term is 

negative, given that 12 12 12 1( ) 0
L F L F

D D    (see inequality 10), and corresponds to the correction factor that 

incorporates the fact that in future if *PK

1 2F
   is reached the follower invests in the second input and the 

leader’s payoff is reduced. The fourth row represents the leader’s payoff from operating with the follower 

(both with the two inputs) from the instant the follower invests in input 2 until infinity.  

As this is a non-preemption game, the leader, if active with input 1, invests in input 2 at the point her 

payoff is maximized. ODE (12), with 2k  , describes the leader’s option value to invest in input 2 if active 

with input 1, whose solution is given by: 

1 2L,PK L,PK L,PK

1 2 2 1 2 2 1 2 2( )f A B
                                       (68) 

where, 
1 ( 2 )  is the positive (negative) solution of the characteristic quadratic function of the 

homogeneous part of equation (15) given by: 
2 2 2

21
( ) ( 1) ( ) ( ) 0

2
m X I Ir            . Solving the equation above 

for 1  leads to: 

2 2 2

2 2 2

2

1 2 2 2

( ) 2( )1 1

2 2

X I X I I

m m m

r    


  

   
     

 
 

                         (69) 

Following the procedures described in the previous subsections we find that L,PK

1 2 0B   . The constant L,PK

1 2A 
 

and the leader’s threshold are determined using the following VM and SP conditions: 
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VM condition: 

1

*PK

1 1 1 0 1 2 12 12 0L,PK *SK

1 2 1 2 1L F L L F

L

X X

D D
A

r r


   


 



   
 

                                           (70) 

with the following economic interpretation: the leader should invest in input 2 at the moment the value 

she attains from operating with input 1 alone forever plus the value of the option to invest in input 2 (left-

hand side of Eq. 70) equals the present value of the cash flows she obtains from operating with the two 

inputs forever subtracted of the investment cost (right-hand side of Eq. 70).  

SP condition: 

1
12 12 0( 1),SK *SK

1 1 2 1 2 L F

L

L

X

D
A

r




 




  


                                   (71) 

Solving together (68), (70) and (71) we obtain the constant L,SK

1 2A 
:  

1

12 12 0L,PK

1 2 ( 1)* K

1 1 2( )

L F

L

P

X

D
A

r 



  
 






                      (72) 

and the leader’s threshold: 

1 1 1 1 0 1*PK

1 2

12 12 0 1

( )

( 1)

L F

L

L F

XD r

D

   


 


 



                                    (73) 

3.2.3.4 First state: leader 

As we can easily see from Figures 1 and 2, in the “sequential-input investment” scenario, in the first-state, 

the value function and investment thresholds of the leader for the PK and SK markets are the same. 

Therefore, the following proposition holds:
23

 

Proposition 4: 

L,PK L,SK

1 1 1 1( ) ( )f f   - given by Expression (53)            (74A) 

*PK * K
1 1L L

S   - given by Equation (58)        (74B)   

where L,PK

1 1( )f   and L,SK

1 1( )f   are the leader’s value function to invest in input 1 if inactive in the PK and 

SK markets, respectively;  *PK
1L
 and * K

1L

S  are the leader’s investment threshold to invest in input 1 if 

inactive in the PK and SK markets, respectively.  

Proof: See Appendix B. 

                                                 
23 Notice that for both the SK and SP markets the leader is active with the two inputs and the follower is active with input 1 only.  
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3.2.4 Illustrative results 

Figure 11 - this figure shows the sensitivity of the investment threshold of the leader and the 

follower to invest in input 2 if active with input 1 (left-hand side) or in input 1 if active with input 2 

(right-hand side) to changes in the market revenue volatility, for the PK market.  

 

The above results show that the investment threshold of the leader is lower than the investment threshold 

of the follower, as we expect, and both thrsholds increase with the market revenue volatility. Comparing 

the firms’ thresholds of the left-hand side with those of the right-hand side, we conlude that for both firms 

the investment threshold to invest in input 1 if active with input 2 is lower than the investment threshold 

to invest in input 2 if active with input 1. This is because in our base case we use 
1

0.05I    and 

2
0.10I   , i.e. the cost of input 2 is assumed to decrease more rapidly than the cost of input 1 (see Table 

1A), and confirms the general intuition whish says that if the cost of two complementary production 

inputs decrease at different rates, it might be optimal to invests sequentially, first in the input whose cost 

is decreasing more slowly (input 1) and then in the input whose cost decrease more rapidly (input 2). 

Figure 12 - this figure shows our results for the PK market. At the top are our results for the sensitivity 

of the thresholds of the leader and follower to invest in input 2 if active with input 1, to changes in the 

correlation between market revenue and cost of input 2 (left-hand side) and degree of complementarity 

between the two inputs (right-hand side). At the bottom is our result for the sensitivity of the thresholds 

of the leader and the follower to invest in input 1 if inactive, to changes in the leader’s market share if 

she is active with the two inputs and the follower is active with input 1 ( 12 1L F
D ).   
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The results for the sensitivity of frims’ investment thresholds to changes in 
1/X I  and   are similar to 

those described in previous sections for the SK market, and therefore similar comments apply. The results 

for the sensitivity of the firms’ threshold to invest to changes in 12 1L F
D  show that an increase in the leader’s 

expected market share if active with te two inputs and the follower is active with one input, delays the 

investment of the follower in input 1 but has no effect on her investment threshold in input 1.   

4. Results 

In this section we provide further sensitivity analysis regarding the most relevant model parameters. As 

for the previous results, we use the following base inputs:
 24

 

 

                                                 
24  For simplicity of notation we use 

1 2I I    . 
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Table 1A: market variables 

X  1I  
2I  

X  
1I

  
2I  

12I    r  X  
1I

  
2I  

12I  
1XI  

2XI  
12XI  

1.0 5.0 5.0 0.02 -0.05 -0.10 -0.75 0.05 0.05 0.20 0.20 0.20 0.20 0.00 0.00 0.00 

Table 1B: Firms’ market revenue share,
i jk kD  

Leader  Follower 

1 0L F
D  

12 0L F
D  

12 1L F
D  

12 12L F
D  

1 1L F
D  

2 2L F
D   

12 12F L
D  

1 1F L
D  

2 2F L
D  

1 12F L
D  

1.0 1.0 0.6 0.5 0.5 0.5  0.5 0.5 0.5 0.4 

Table 1C: complementarity factors,   and 
k  

2  
2  

12  12 1 2       

0.10 0.10 0.30 0.10 

Table 2 - model inputs used in Figure 10 and Table 3 

1I
  -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 

2I  -0.05 -0.10 -0.15 -0.20 -0.25 -0.30 

  0.00 0.05 0.10 0.15 0.20 0.25 

       

1  0.10 0.10 0.10 0.10 0.10 0.10 

2  0.10 0.10 0.10 0.10 0.10 0.10 

12  0.20 0.25 0.30 0.35 0.40 0.45 

  0.00 0.05 0.10 0.15 0.20 0.25 

Table 3 - this table provides complementary results for the combined effect of changes in 

both   and   (ranging from 0.00 to 0.25) on the threshold to invest in the two inputs at the 

same time (for the SK and PK markets), for the leader (table at the top) and the follower 

(table at the bottom).   

L

*PK&SK
12  

  

0.00 0.05 0.10 0.15 0.20 0.25 

  

0.00 0.75 0.60 0.50 0.43 0.38 0.33 

0.05 0.87 0.69 0.58 0.50 0.43 0.39 

0.10 0.99 0.79 0.66 0.56 0.49 0.44 

0.15 1.11 0.89 0.74 0.63 0.55 0.49 

0.20 1.23 0.98 0.82 0.70 0.61 0.55 

0.25 1.35 1.08 0.90 0.77 0.68 0.60 
 

F

*PK&SK
12  

  

0.00 0.05 0.10 0.15 0.20 0.25 

  

0.00 1.50 1.20 1.00 0.86 0.75 0.67 

0.05 1.73 1.39 1.16 0.99 0.87 0.77 

0.10 1.97 1.58 1.31 1.13 0.99 0.88 

0.15 2.21 1.77 1.48 1.26 1.11 0.98 

0.20 2.46 1.96 1.64 1.40 1.23 1.09 

0.25 2.70 2.16 1.80 1.54 1.35 1.20 
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The above results show that   and    have opposite effects on the investment thresholds of the leader and 

the follower to invest in the two inputs at the same time. More specifically, an increase in the degree of 

complementarity (  ) accelerates the investment for both firms, whereas an increase in the difference 

between the cost growth rates of the two inputs (  ) delays the investment for both firms. These 

counteracting effects of   and   make the conventional wisdom, which says that “when a production 

process requires two extremely complementary inputs, a firm should upgrade (or replace) them 

simultaneously…” less likely to hold. Indeed, if the costs of the two inputs decrease at very different 

rates, it might be optimal to invest first in the input whose cost decreases more slowly and delay the 

investment in the input whose cost decreases more rapidly.  

In Table 3 the marginal changes in   and   are of the same size - i.e., 0.05     -, yet the threshold 

values stated in the diagonals of the up and down matrix of Table 3 decrease slightly. Therefore, we 

conclude that, ceteris paribus, for a given marginal change in   and   the effect on firms’ investment 

thresholds of the former dominates that of the latter. We provide further insights on this regard below.  

4.1 Further analysis 

Contrary to previous works (e.g., Siddiqui and Takashima, 2012), where the options value depends on the 

same underlying variable, our work uses a modelling setting where the options value (to invest in input 1 

alone, or input 2 alone or inputs 1 and 2 at the same time) are driven by independent (and possibly 

correlated) underlying variables - 
1( )t , 

1( )t  and 
12 ( )t  respectively. This turns more difficult the 

characterization of the market conditions that lead to sequential-input vs simultaneous-input investments 

for both firms, since the investment thresholds related to 
1( )t , 

1( )t  and 
12 ( )t  are not comparable. 

Nevertheless, we summarize below some further insights from our model results. 

Figure 13 - this figure illustrates the most likely investment behaviours (sequential-input vs 

simultaneous-input) for the leader and the follower according to the relative values of 
1I

  and 

2I , for the SK and PK markets. 
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We start our analysis by the scenarios where the (
1I

 ,
2I ) point sets are in the down-right or top-left 

quadrants, and conclude, respectively: if 
1I

  , with 
1

0,I   , and 
2I  , with 

2
0,I   , *

1L
  , *

1F
  , 

*

2L
   and *

2F
  , and sequential-input investments (starting by input 2) are more likely for both firms; and if 

1I
  , with 

1
0,I   , and 

2I  , with 
2

0,I   , *

1L
  , *

1F
  , *

2L
   and *

2F
  , and sequential-input 

investments (starting by input 1) are more likely for both firms. If the (
1I

 ,
2I ) point sets are in the top-

right or down-left quadrants, we conclude, respectively: if 
1I

  , with 
1

0,I   , and 
2I  , with 


2

0,I   , *

1L
  , *

1F
  , *

2L
   and *

2F
  , and sequential-input investments (starting by input 2) are more 

likely for both firms; and if 
1I

  , with 
1

0,I   , and 
2I  , with 

2
0,I   , *

1L
  , *

1F
  ,  *

2L
   and *

2F
  , 

and sequential-input investments (starting by input 1) are more likely for both firms.  

Notice that if the (
1I

 ,
2I ) point sets are in the top-left or down-right quadrants, sequential-input 

investments are more likely than if the 
1 2

( , )I I   point sets are in the down-left or top-right quadrants. This 

is because, in the former cases, 
1I

  and 
2I  have different signs which makes sequential-input 

investments, starting by the input whose growth rate is positive, more likely. Finally, if the 
1 2

( , )I I   point 

sets are on the 45 degrees dotted line, 0   and simultaneous-input investments are more likely regardless 

of the relative values of 
1I

  and 
2I , since these represent cases where the cost growth rates of the two 

inputs are the same (either positive or negative).
 25

  

                                                 
25  Notice that 

1 2I I     and, for instance, if: (i) 
1

0.05I   and 
2

0.05I   or 
1

0.05I    and 
2

0.05I   , 0  ; (ii) if 

1
0.05I    and 

2
0.10I   , 0.05   - down-left quadrant; (iii) if 

1
0.05I    and 

2
0.10I  , 0.15    - down-right quadrant; 

(iv) if 
1

0.05I   and 
2

0.10I  , 0.05    - top-right quadrant; (v) if 
1

0.05I   and 
2

0.10I   , 0.15   - top-left quadrant. 

1
( )         

  

I


 

0   

  

  2
  ( )I  
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We note the fact that, although in general the quadrant where the 
1 2

( , )I I   point sets are determine to some 

extent the investment behaviour of both firms (sequential-input or simultaneous-input investments), the 

investment thresholds of the leader and the follower have different sensitivities to changes in the inputs 

cost growth rates - see section 3. 

Proposition 5: in non-pre-emption duopoly SK and PK markets, ceteris paribus, an increase in the 

difference between the cost growth rates of the two inputs (  ), turns more likely sequential-input 

investments for both firms.  

Proof: See Appendix B. 

Corollary 5.1:  for an inactive leader (follower), ceteris paribus, if there is a 
1I

  and a 
2I  so as 

12I  is 

kept unchanged, *

1L
   ( *

1F
  ), *

2L
   ( *

2F
  ) and *

12L
  ( *

12F
 ) is kept unchanged - and sequential-input 

investments, starting by input 1, are more likely for both firms.  

Proof: See Appendix B. 

Corollary 5.2:  for an inactive leader (follower), ceteris paribus, if there is a 
1I

  and a 
2I  so as 

12I  is 

kept unchanged, *

1L
   ( *

1F
  ), *

2L
   ( *

2F
  ) and  *

12L
  ( *

12F
 ) is kept unchanged - and sequential-input 

investments, starting by input 2, are more likely for both firms.  

Proof: See Appendix B. 

Corollary 5.3:  for an inactive leader (follower), ceteris paribus, if there is a 
1I

  and a 
2I  so as there 

is a 
12I , *

1L
   ( *

1F
  ), *

2L
   ( *

2F
  ) and *

12L
   ( *

12F
  ) - and both sequential-input investments, staring by 

input 1, and simultaneous-input investments are possible, being the predominant investment behaviour 

dependent of the (ex-ante) relative values of 
1I

  and 
12I  and (ex-ante) how far away 1( )t  and 12 ( )t  are 

from *

1 ( )
L

t  and *

12 ( )
L

t , respectively. 

Proof: See Appendix B. 

Proposition 6: for the SK and PK markets, ceteris paribus: (i) an increase in the degree of 

complementarity between the two inputs (  ) accelerates the investment of both firms in the two inputs at 

the same time and the investment of the follower in input 2 if active with input 1, yet the sensitivity of the 

follower’s threshold to invest in the two inputs at the same time to changes   is more acute than that of 

the leader.  

Proof: See Appendix B. 

Corollary 6.1: as 12 0  , the follower delays infinitely the investment in input 2 if active with input 1, and 

the two firms delay infinitely the investment in the two inputs at the same time if inactive. 

Proof: See Appendix B. 

Corollary 6.2: as 12 1   (i.e., cost savings if operating with the two inputs tends to a maximum): (i) the 

leader behaves as if she was in a monopoly-like regarding the investment in the two inputs at the same 
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time; (ii) if ex-post market shares of the two firms when active with the two inputs are expected to be 

symmetric (i.e., 12 12 0.5
L F

D  ), the threshold of the follower to invest in the two inputs at the same time tends 

to be twice that of the leader; (iii) if the leader is active with the two inputs, the closer the market share of 

the follower if active with input 1 (
1 12F L

D ) to her market share if operating with the two inputs (
12 12F L

D ), the 

later she invests in input 2 if active with input 1. 

Proof: See Appendix B. 

Corollary 6.3: (i) as 
1 2( ) 0    (i.e., cost savings if operating with input 1(2) tends to zero), the leader 

delay infinitely her investment in input 1(2); (ii) as 
1 2( ) 1     (i.e., cost savings if operating with input 

1(2) tends to a maximum) the leader tends to behave as if she was in a monopoly-like regarding the 

investment in input 1(2); (iii) an increase in 
1 (

2 ) accelerates the follower’s first-stage investment in 

input 1(2) if inactive, and delays the second-stage investment in input 2 (1) if active with input 1 (2).          

Proof: See Appendix B. 

Proposition 7: for both the SK and PK markets where the leader is active with the two inputs, ceteris 

paribus: (i) if the follower is inactive, an increase in the market share she expects to attain after investing 

in the two inputs (
12 12F L

D ) as well, accelerates her investment in the two inputs at the same time; (ii) if the 

follower is active with input 1(2), an increase in the market share she attains after investing in input 1(2), 

1 12F L
D  (

2 12F L
D ), accelerates her second-stage investment in input 2(1); (iii) if the follower is active with input 

1(2), an increase in the market share the follower expect to attain if active with the two inputs (
12 12F L

D ), 

accelerates her second-stage investment in input 2(1). 

Proof: See Appendix B. 

Proposition 8: (i) for the SK and PK markets, ceteris paribus, an increase in 
12  accelerates the leader’s 

investment in the second stage (input 2) if active with input 1; (ii) the leader’s threshold to invest in the 

second stage (input 2) if active with one input (input 1) is more sensitive to changes in the 
12  if in a SK 

market. 

Proposition 9: (i) for the SK and PK markets, ceteris paribus, an increase in 1 2( )   accelerates the 

leader’s investment in the second-stage (input 2) if active with one input (input 1); (ii) the leader’s 

threshold to invest in the second input (input 2) if active with one input (input 1) is more sensitive to 

changes in 
1  if in a SK market. 

Proof: See Appendix B. 

Proposition 10: (i) for the SK and PK markets, an increase in 1  accelerates the leader’s investment in 

the first-stage (input 1) if inactive; (ii) the leader’s threshold to invest in input 1 if inactive is more 

sensitive to changes in 
1  if in a PK market. 

Proof: See Appendix B. 
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Table 2 - this table provides information on firms’ investment thresholds for all the investment 

scenarios considered in this research. This analysis provides us with the opportunity to test empirically 

Propositions 1, 3 and 4 stated in previous sections - see comment made in the right hand-side column 

of the table. The results were computed using the base parameters stated in Tables 1A, 1B and 1C.   

  
 

 
SK market PK market Note 

Simultaneous-input  
investment 

Leader: 
Real option value  0.67 0.67 

Proposition 1, page 12. 

*

12L
             0.58             0.58  

Follower: 
Real option value  0.25  0.25 

*

12F
             1.16              1.16  

Sequential-input  

investment 

First-stage, 

starting by input 1 

Leader: 
Real option value 0.32 0.32 

Proposition 4, page 25. *

1L
  1.50 1.50 

Follower: 
Real option value 0.14 0.10 

Follower invests earlier in the 
first input if in a PK market. 

*

1F
  3.00 3.75 

First-stage, 

starting by input 2 

Leader: Real option value 0.37 0.37 
Proposition 4, page 25.  *

2L
  1,97 1,97 

Follower: Real option value 0.17 0.13 Follower invests earlier in the 

first input if in a PK market.  *

2F
  3.94 4.93 

Second-stage, 
with input 2 

Leader: 
Real option value 0.99 1.25 

Leader invests earlier in the 
second input if in a PK market. 

*

1 2L
    1.46 1.10 

Follower: 
Real option value 0.58 0.58 

Proposition 3, page 22 *

1 2F
   1.67 1.67 

Second-stage, 

with input 1 

Leader: 
Real option value 0.98 1.12 Leader invests earlier in the 

second input if in a PK market. 
*

2 1L
   1.11 0.83 

Follower: 
Real option value 0.50 0.50 

Proposition 3, page 22. *

2 1F
   1.27 1.27 

 

These results show that for both the SK and PK market, in sequential-input investments, the thresholds to 

invest in input 2 if active with input 1 are higher than the thresholds to invest in input 1 if active with 

input 2 for both firms (i.e., *SK *SK

1 2 2 1L L
    or 1.46 1.11 , *PK *PK

1 2 2 1L L
    or 1.10 0.83 , *SK *PK *SK *PK

1 2 1 2 2 1 2 1F F F F
          or 

1.67 1.27 ). This behaviour of the firms is a consequence of the fact that we assume in our base model 

inputs that the cost growth rate of input 1 decreases more slowly than the cost growth rates of input 2 

(
1

0.05I   , 
1

0.10I   ), and is a more vividly illustration of how sensitivity the two firms are to changes 

in the inputs cost growth rates. These results also confirm Propositions 1, 3 and 4 - see our comment 

provided in the column of the right hand-side of Table 2.            

5. Conclusions 

We study a multi-input investment problem for two market structures (SK and PK markets), where there 

is (a leader-follower) competition, complementarity between the investment inputs and uncertainty about 

both the input-related investment cost and the market revenue. This is a more realistic modelling setting 

for some investment decisions, and enabled us to produce a rich set of analysis and make some insightful 

conclusions regarding firms’ optimal investment behaviours for this investment context.  
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Amongst other results, we find that the degree of complementarity between the inputs of an investment 

has a nonlinear and asymmetric effect on the investment behaviour of the leader and the follower and 

across the market structures. More specifically, in simultaneous-input investments, the behaviour of the 

two firms is the same for the SK and PK markets; in sequential-input investments, the behaviour of the 

leader regarding the investment in the first input is the same for the both markets, but she invests later in 

the second input if in a SK market. Also, the follower if in a SK market invests earlier in the first input 

and later in the second input as compared to when she is in PK market.  

Furthermore, ex-ante and ex-post market shares have a significant effect on firms’ investment behaviour 

for some sequencing-investment scenarios. For instance, for the SK and PK markets, an increase in the 

leader’s ex-post market share for when she is active with the follower with the two inputs, has no effect 

on her behaviour to invest in the two inputs at the same time, but delays significantly the investment of 

the follower in the two inputs at the same time; an increase in the leader’s expected market share for when 

she is active with the follower with the two inputs, delays significantly the investment of the follower in 

the second input if active with one input and has no effect on the leader’s behaviour to invest in the 

second input if active with one input; and, for the SK market, an increase in the leader’s expected market 

share for when she is active with the two inputs and the follower is active with one input, accelerates the 

investment in the second input for the two firms.    

Additionally, we show that there are specific markets conditions where the conventional wisdom which 

says that “when a production process requires two extremely complementary inputs, a firm should 

upgrade (or replace) them simultaneously” is less likely to hold, particularly for the follower. More 

specifically, we find that f the cost growth rates of two inputs differ considerably and the ex-ante and or 

ex-post market shares of the leader and the follower are very asymmetric, it is very likely that at least the 

follower will invest in the two inputs sequentially. We also find that the degree of complementarity 

between the two inputs and the difference between the cost growth rates of the two inputs have opposite 

effects on firms’ thresholds to invest in the two inputs at the same time. The former accelerates the 

investment whereas the later delays the investment, being the effect of the degree of complementarity 

slightly dominant over the effect of the difference between the cost growth rates of the two inputs. 

Finally, an increase in the correlation between market revenue and in the investment cost accelerates 

asymmetrically the investment of both firms for all scenarios. 

This research can be extended in several ways. For instance, it would be interesting to consider markets 

where pre-emption is allowed, or there is a second-mover advantage, or the degree of complementarity 

between inputs changes over time, or ex-post market shares are stochastic.  
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Appendix A 

1. Proof of homogeneity of degree-one 

If the value-matching relationship can be expressed as the equality between the option value denoted 

by  F,SK

12 2,F X I  and the difference between the two functions, F,SK

2 ( )f X  and F,SK

3 2( )f I , representing  the net value 

generated from exercising the option, where the vectors X  and 2I , of size n  and m  respectively are 

defined by  1 2, , , nX X X X  and  1 2

2 2 2 2, ,..., mI I I I , then Euler’s theorem on homogenous functions applies (see 

Sydsaeter and Hammond, 2006). The value matching relationship is: 

 F,SK F,SK F,SK

12 2 2 3 2, ( ) ( )F X I f X f I 
 

The associated smooth pasting conditions are: 

F,SK F,SK

12 2

F,SKF,SK

312

2 2

i i

j j

F f
i

X X

fF
j

I I

 
 

 


  

 

 

These conditions imply: 

F,SKF,SK F,SK F,SK

312 12 2
2 2

1 1 1 12 2

n m n m

i j i j

i j i ji j i j

fF F f
X I X I

X I X I   

  
  

   
     

If the two functions, SK

2 ( )f X  and SK

3 2( )f I , possess the homogeneity of degree-one property, then by Euler’s 

theorem: 

F,SK F,SK
F,SK F,SK F,SK12 12

2 3 12

1 1 2

n m

i j

i ji j

F F
X I f f F

X I 

 
   

 
   

which implies that  F,SK

12F  is a homogenous function of degree one. The assertion that the option value is 

represented by a homogenous degree-one function can be tested by the value matching relationship and 

its associated smooth pasting conditions. Examining the value “matching conditions” we can easily prove 

that homogeneity exists. Taking the value matching condition given by Eq. (17), reproduced here as 

Equation A3, 

*

12 12 12F,SK * * *

12 2 2

.
( , ) F L

F

X

X D
F X I I

r




 


                                                     (A1) 
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if the option value is F,SK

12 2( , )F X I  and the value after exercising the option is * *

12 12 12 2. / ( )
F L FXX D r I   , with both 

X and 2I  stochastic, then if F,SK * *

12 2 12 12 12 2( , ) . / ( )
F L FXF X I X D r I     holds, doubling *X  and *

2F
I  doubles F,SK

12 2( , )F X I , 

if so, there is homogeneity of degree-one. If the “value matching” relationship exhibits homogeneity of 

degree-one, then the two variables 2( , )X I  can be replaced by, in this case, the ratio 2 2/X I  . 
26

  

2. Derivation of ODE (12) 

Rewriting Equation (11) as (A4): 
27

 

2 2 2 2

2 2 2
2 2 2 212 12 12 12 12

2 2 2 122 2

2 2 2

1 1
0

2 2
X I X I XI X I

F F F F F
X I XI X I rF

X I X I X I
      

    
     

     
            (A4) 

In order to reduce the homogeneity of degree two in the underlying variables to homogeneity of degree 

one, similarity methods can be used. Let 
2 2/X I  , so: 

 2 2 2 2 2

2 2
2

2 2 2

2 2

2

2 2 2

2 2

2 2 3

2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2 2

    ( , ) / ( )

( , ) ( )
 ( )

( , ) ( )
 

( , ) ( )

( ) ( )

( , ) ( ) 1

( , ) ( )

 ( )

F X I f X I I f I

F X I X f
f

I I

F X I f

X

F X I f X

I I

F X I f

X I

F X I f X

X I I
























 

 
 

 

 


 

 


 

 


 

 
 

  

 

Substituting back to Equation (A4) we obtain Equation (12), rewritten here as (A5): 

 
2 2 2

2
2 2 12 2 12 2

2 2 1 1 1 12 22

2 2

1 ( ) ( )
( ) ( ) . ( ) ( ) 0

2 L Fm X I I

f f
X D r f

 
       

 

 
     

 
   (A5) 

where, 
2 2 2 2

2 2 2 2m X I XI X I        . 

Appendix B 

Proof of proposition 1: in simultaneous-input investments both firms play a “one-shot” game, regardless 

of the market structure, i.e. the investment game ends for the two firms at the moment they exercise the 

option to invest in the two inputs at the same time. Consequently, firms’ value, if inactive, equals the 

option value to invest in the two inputs at the same time - which is the same for both markets - and, if 

active with the two inputs, equals the present value of the cost savings she attains from operating with the 

two inputs forever - which is the same for both markets. Therefore, conditions 29A and 29B are proven. 

From the above rationale we also conclude that the boundary conditions used to derive the investment 

thresholds expressions are the same for the SK and PK markets, and so conditions (29C) and (29D) are 

also proved.                       

                                                 
26  This property can be easily proved empirically using the above VM condition and the base inputs of section 4, i.e., ceteris 

paribus, doubling both *X  and *

2F
I in (A3) doubles F,SK

12 2( , )F X I  - proof can be provided under request. 
27  For simplicity of notation we drop the upper script on 12F  and 12 2( )f  .  
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Proof of proposition 2: in our framework the investment thresholds are trigger points which, if reached 

the first time, advises firms to invest, otherwise instruct firms to defer the investment. It also results from 

our modelling setting that firms lose the option to invest in the two inputs at the same time if they exercise 

the option to invest in one of the inputs alone (input 1 or input 2). Consequently, if the thresholds which 

advise the leader and the follower to invest in input 1 alone ( *

1 ( )
L

t  and *

1 ( )
F

t  respectively) or input 2 alone 

( *

2 ( )
L

t  and *

2 ( )
F

t  respectively) are reached before that which advises the leader and the follower to invest 

in the two inputs at the same time ( *

12 ( )
L

t  and *

12 ( )
F

t  respectively), both firms invest in the two inputs 

sequentially.                    

Proof of proposition 3: in sequential-input investments, in the terminal-state where the follower operates 

with input 1 and the leader operates with the two inputs, the follower plays a “one-shot” game regarding 

the investment in the second input, regardless of the market structure (i.e., the investment game ends at 

the moment the follower exercises the option to invest in input 2). Before investing in the second input, the 

follower’s value equals the value of the option to invest in input 2 plus the cost savings she attains from 

operating with input 1 forever. Therefore, condition (59A) is proved. From the above rationale we also 

conclude that the boundary conditions used to derive the follower’s investment threshold expression are 

the same for the SK and PK markets, and therefore condition (59B) is also proved.            

Proof of proposition 4: in sequential-input investments the leader invests before the follower in one of the 

inputs (input 1 or input 2), regardless of the market structure. Therefore, the leader’s value, if inactive, 

equals the value of the option to invest in input 1 (2), and, if active with input 1 (2), equals the value of 

the option to invest in input 2 (1) plus the cost savings she attains from operating with input 1 (2) forever. 

Therefore, condition (74A) is proved. Following the same rationale as that used in the proofs of 

propositions 1 and 2 above, we also prove condition (74B).           

Proof of proposition 5 and corollaries 5.1 and 5.2: in order to prove proposition 5 we have to prove that 
*

1L
  and *

1F
  decrease with  , and or *

12L
  and *

12F
  increase with  . The most obvious way to do this would 

be to determine the first derivative of the threshold expressions with respect to   (i.e., 
,

* /
i jk   ). Yet,   is 

not in the threshold expressions and, therefore, this approach is not feasible. Nevertheless, from section 3 

we know that, ceteris paribus, if 
1I

   and 
2I   so as   , *

1L
  , *

1F
  , *

2L
   and *

2F
  , both firms invest 

earlier in input 1 and later in input 2 - and therefore sequential-input investments (starting by input 1) 

are more likely. Also, if 
1I

   and 
2I   so as   , *

1L
  , *

1F
  , *

2L
   and *

2F
  , both firms invest earlier in 

input 2 and later in input 1 - and therefore sequential-input investments (starting by input 2) are more 

likely.                       

Proof of corollaries 5.3: following the rationale used above for corollaries 5.1 and 5.2 we conclude that 

when simultaneous changes in the cost growth rates of the two inputs lead to a decrease in both the 

threshold to invest in one input alone (input 1 or input 2) and the threshold to invest in the two inputs at 

the same time, sequential-input investments (staring by input 1 or input 2) and simultaneous-input 

investments are possible. The predominant investment behaviour is not possible to generalise since both 

the investments in input 1 alone, or input 2 alone, or inputs 1 and 2 at the same time are all earlier and, 

therefore, the occurrence of sequential-input or simultaneous-input investments depend on the relative 
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values and changes in 
1I

 , 
12I  and (ex-ante) how far away 1( )t  and 12 ( )t  are from *

1 ( )
L

t  and *

12 ( )
L

t , 

respectively.                

Proof of proposition 6: proposition 1 shows that *SK *PK *SK&PK

12 12 12L L L
     and *SK *PK *SK&PK

12 12 12F F F
    . To study the 

relationship between   and the above thresholds we determine the first derivative of *SK&PK

12L
  and *SK&PK

12F
  

with respect to   - see Eqs. (20) and (29). Yet, since   is not in the above threshold expressions, we 

determine the first derivatives of (29) and (20) with respect to the complementarity-related parameter(s) 

that is in the threshold expression (
12 ), which yield:

 28
 

 
 

 

*SK&PK
1 1 12 0 12 012

2

12
1 12 12 0 12 12 0

( )
0

L F L FL

L F L F

Xr D D

D D

  

   

 
  

 
        (1B) 

  

 

*SK&PK

12 1 1 12 12

2

12
1 12 12 12

1
0

1

F F L

F L

Xr D

D

   

  

  
  

   

        (2B) 

*SK&SP
1 1 1 1 1 12 12 12 11 2

2

12
12 12 12 1

( ) (1 )
0

(1 )

F L F LF

F L

X r D D

D

     

  


         

  
   

           (3B) 

1B, 2B and 3B are all negative, therefore (i) is proved. To prove that the follower’s threshold is more 

sensitive to changes in   than the leader’s threshold we have to show that 
*SK&PK

12

*SK&PK

12

/
1

/

L

F

 

 

 
  

 
, 

12  . Using 

the above expression and simplifying, yields:
  

 

2

1 12 0 12 0 1 12 12 12

2

1 12 12 0 12 12 0

1
L F L F F L

L F L F

D D D

D D

  

  

 
 


, with  12 0,1  . Taking the 

limits yields: 
12   0

0Lim
 

   and 
12

1 12 12 12 12

  1
1 12 0 12 0

F L F L

L F L F

D D
Lim

D D






 


. Since 12 0 1

L F
D   and 12 12 0,0.5

F L
D   , 1  , 

12  , and therefore 

(ii) is also proved.  

Proof of corollary 6.1:  12 0,1  , 
12

*SK&PK

1 2
  0 F

Lim


 


   and 
12

*SK&PK

12
  0 L

Lim





  , therefore, corollary 6.1 is proved. 

Proof of corollary 6.2:  12 0,1   ,
12

*SK&PK 1
12

  1
1

( )

1L

Xr
Lim


 








, 

12

*SK&PK 1
12

  1
1 12 12

( )

( 1)F

F L

Xr
Lim

D

 








 and  

12

1 1 1 1 1 12*SK&PK

1 2
  1

12 12 1

( )

(1 )

F L

F

F L

X r D
Lim

D

    







 



. 

Notice that 
1 1( ) / ( 1)Xr     is the threshold mark up normalized by the investment cost for a monopoly 

market, therefore (i) is proved. The follower’s threshold differs from that of the leader by a factor: 

12 121/
F L

D . Note that 12 12 0,0.5
F L

D    and when 12 12 0.5
F L

D   (i.e., the ex-post market shares of the two firms if 

active with the two inputs are symmetric) the above expression for 
12

*SK&PK

12
  1 F

Lim





 is twice that of
12

*SK&PK

12
  1 L

Lim





, 

and therefore (ii) is proved. Finally, from 
12

*SK&PK

1 2
  1 F

Lim


 


 we conclude that as 12 1   , the follower’s threshold 

to invest in input 2 if active with input 1 increases with the ratio 1 12 12 12/
F L F L

D D , therefore, (iii) is also proved.       

Proof of corollary 6.3: note that  1 0,1   and 
1

*SK&PK

1
  0 L

Lim





  , therefore (i) is proved; 
1

*SK&PK 1
1

  1
1

( )

1L

Xr
Lim


 








 

and corresponds to the threshold mark up normalized by the investment cost for a monopoly market, 

                                                 
28  The proofs for the signs of the first derivative are available under request. 
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therefore (ii) is proved; to prove (iii) we need to prove that the first derivatives of *SK&PK

1L
  and *SK&PK

1 2F
 

 with 

respect to 
1  are negative and positive, respectively, which we show below.

 29
 Therefore (iii) is also 

proved. 

 

 

*SK&PK
1 1 1 0 1 01

2

1
1 1 1 0 1 1 0

( )
0

L F L FL

L F L F

Xr D D

D D

  

   

 
  

 
                      (4B) 

*SK&SP

1 2 1 1 1 12

1 12 12 12 1

0
(1 )

F F L

F L

D

D

  

  


  

 
                       (5B) 

                     

Proof of proposition 7: 
12 12F L

D  is the follower’s market share if both firms are active with the two inputs 

and 
1 12F L

D  is the follower’s market share if she is active with input 1 and the leader is active with the two 

inputs. To prove (i) and (ii) we need to show that the first derivative of *SK&PK

12F
  with respect to 

12 12F L
D  and the 

first derivative of *SK&SP

1 2F
   with respect to 

1 12F L
D , respectively, are both negative. This is shown by (6B) and 

(7B) below and therefore (i) and (ii) are proved. To prove (iii) we need to show that the first derivative of 
*SK&SP

1 2F
 

 with respect to 
12 12F L

D  is negative. This is shown by (8B), and therefore (iii) is also proved.   

*SK&PK

12 1 1 12

2

12 12
1 12 12 12

( )( 1)
0

( 1)

F

F L
F L

Xr

D D

    

 

  
  

   

     (6B) 

*SK&SP

1 2 1 1 1 12

2

1 12
12 12 12 1

0
(1 )

F F L

F L
F L

D

D D

  

 

 
 

   

                       (7B) 

*SK&SP
1 1 1 1 1 12 12 11 2

2

12 12
12 12 12 1

( ) (1 )
0

(1 )

F LF

F L
F L

X r D

D D

      

 


     

  
   

         (8B) 

                     

Proof of proposition 8: to prove (i) we need to prove that the first derivatives of * K

1 2L

S   and  *PK

1 2L
   with 

respect 
12  is negative, which is shown by (9B) and (10B) below. Therefore (i) is proved.  

*SK

1 2 1 1 1 1 1 1 12 0 1

2

12
12 12 0 1

( ) ( 1)
0

( 1)

L L F L F

L F

XD r D

D

     

  

    
  

   

                                (9B) 

*PK

1 2 1 1 1 1 0 1 12 0 1

2

12
12 12 0 1

( ) ( 1)
0

( 1)

L L F L F

L F

XD r D

D

     

  

    
  

   

                             (10B) 

To prove (ii) we need to compare (9B) with (10B) and show that 
*PK *SK

1 2 1 2

12

12 12

, L L
 


 

  
 

 
 , or that 

*PK *SK

1 2 1 2

12

12 12

/ 1,  L L
 


 

  
   

 
. Replacing the terms of this inequality by their respective expressions and 

simplifying yields: 
2 2 2

1 1 1 1 1 1 1 1 1 12 0 1

2 2 2

1 1 1 1 1 0 1 1 1 12 0 1

( 1) ( 1) ( ) ( 1) ( 1)

( 1) ( 1) ( ) ( 1) ( 1)

L F L F

L F L F

X

X

D r D

D r D

       

       

      
 

      
. If the market conditions 

(revenue volatility, inputs cost volatility, etc) are the same for the SK and PK markets, 1 1    and the 

                                                 
29  The proofs for the signs of the first derivative are available under request. 
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above expression yields: 1 1 1 1 1 1 12 0 1

1 1 1 1 0 1 12 0 1

( ) ( 1)

( ) ( 1)

L F L F

L F L F

X

X

D r D

D r D

    

    

   
 

   
. Since 1 1 12 0L F L F

D D  and  12 0,1  , 1  ,
12 . 

Therefore, (ii) is also proved.                  

                    

Proof of proposition 9: to prove (i) we need to prove that the first derivative of * K

1 2L

S 
 and *PK

1 2L
 

 with respect 

to the ex-ante cost savings the leader attains while operating with the input1 (
1 ) is negative. This is 

shown below by (9B) and (10B) and therefore (i) is proved.  
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To prove (ii) we need to compare (11B) with (12B) and show that 
*PK *SK

1 2 1 2

1

1 1

, L L
 


 

  
 

 
 , or that 

*PK *SK

1 2 1 2

1

1 1

/ 1,  L L
 


 

  
 

 
. Replacing the terms of the inequality by the respective expressions and proceeding as 

for proposition 8 (i.e., 
1 1   if the same market conditions hold for the SK and PK markets) we obtain: 

1 1 1

1 0

L F

L F

D

D


  . Since 

1 0 1 1L F L F
D D  and  1 0,1   , 

11,    ,  and therefore (ii) is proved.       

Proof of proposition 10: to prove (i) we need to prove that the first derivatives of * K

1 2L

S   and *PK

1 2L
   with 

respect to 
1  is negative. This is shown below by (13B) and (14B), therefore (i) is proved.  
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                                      (14B) 

To prove (ii) we need to compare (13B) with (14B) and show that 
*PK *SK

1 1

1

1 1

, F F
 


 

 
 

 
 , or that 

*PK *SK

1 1

1

1 1

/ 1,  F F
 


 

 
   

 
. Replacing the terms of the inequality by the respective expressions and 

proceeding as for propositions 8 and 9 (i.e., 1 1   if the same market conditions hold for the SK and PK 

markets) we obtain: 1 1

1 12

F L

F L

D

D
  . Since 1 1 1 12L F F L

D D  (due to the effect of complementarity), 1  ,  and (ii) is 

proved.               



 41 

References 

Anderson, E., Schmittlein, D., 1984. Integration of Sales Force: An Empirical Examination. Rand Journal 

of Economics 15, 385-395. 

Azevedo, A., Paxson, D., 2011. Developing Real Option Game Models. European Journal of Operational 

Research. 237, 909-920. 

Carree, M., Lokshin, B., Belderbos, R., 2010. A Note on Testing for Complementarity and 

Substitutability in the Case of Multiple Practices. Journal of Productivity Analysis Published online, 

20 July 2010. 

Cassiman, B., Veugelers, E., 2004. In Search of Complementarity in Innovation Strategy: Internal R&D 

and External Knowledge Acquisition, Working Paper, University of Leuven. 

Chevalier-Roignant, B., Flath, C., Huchzermeier, A., Trigeorgis, L., 2011. Strategic investment under 

uncertainty: A synthesis, European Journal of Operational Research 215, 639-650.  

Cho, Soo-Haeng and McCardle, K., 2009. The Adoption of Multiple Dependent Technologies. 

Operations Research 57, 157-169. 

Colombo, M., Mosconi, R., 1995. Complementarity and Cumulative Learning Effects in the Early 

Diffusion of Multiple Technologies. Journal of Industrial Economics 43, 13-48. 

Dixit, A., Pindyck, R., 1994. Investments under Uncertainty. Princeton NJ, Princeton University Press. 

Etro, F., 2007. Competition, Innovation, and Antitrust: A Theory of Market Leaders and its Policy 

Implication, Berlin, Springer. 

Femminis, G., Martini, G., 2011. Irreversible Investment and R&D Spillovers in a Dynamic Duopoly, 

Journal of Economic Dynamics & Control 35, 1061-1090. 

Hoppe, H., 2002. ”The Timing of New Technology Adoption: Theoretical Models and Empirical 

Evidence”, The Manchester School, 70, 56-76. 

Huisman, K., 2001. Technology Investment: A Game Theoretical Options Approach, Boston, Kluwer. 

Jovanovic, B., Stolyarov, D., 2000. Optimal Adoption of Complementary Technologies. American 

Economic Review 90, 15-29. 

Lambrecht, B., Perraudin, W., 2003. Real Options and Preemption under Incomplete Information. Journal of 

Economic Dynamics and Control 27, 619-643. 

Mason, R. and Weeds, H., 2010, Investment, Uncertainty and Pre-emption. International Journal of 

Industrial Organization 28, 278-287.   

Milgrom, P., Roberts, J., 1990. Economics of Modern Manufacturing: Technology, Strategy, and 

Organization. American Economic Review 80, 511-528.  

Milgrom, P., Roberts, J., 1994. Complementarities and Systems: Understanding Japanese Economic 

Organization. Working Paper, Stanford University. 

Milgrom, P., Roberts, J., 1995. Complementarities and Fit Strategy, Structure, and Organizational Change 

in Manufacturing. Journal of Accounting and Economics 19, 179-208. 

Miravete, E., Pernías, J., 2006. Innovation Complementarity and Scale of Production, Journal of 

Industrial Economics 54, 1-29.  

Mohnen, P., Roller, L., 2000. Complementarity in Innovation Policy. Working Paper, University of 

Quebec. 

Morettto, M., 2008. Competition and Irreversible Investments under Uncertainty. Information Economics 

and Policy 20, 75-88. 

Paxson, D., Pinto, H., 2005. Rivalry under Price and Quantity Uncertainty, Review of Financial 

Economics 14, 209-224. 



 42 

Pawlina, G., Kort, P., 2006. Real options in an Asymmetric Duopoly: Who Benefits from your 

Competitive Advantage? Journal of Economics and Management Strategy 15, 1-35. 

Pillai, U. McLaughlin, J., 2013. A Model of competition in the solar panel industry, working paper, 

university of Albany and University of Michigan. 

Smets, F., 1993. Essays on Foreign Direct Investment. PhD thesis, Yale University. 

Smith, M., 2005. Uncertainty and the Adoption of Complementary Technologies. Industrial and 

Corporate Change 14, 1-12. 

Smith, M., Weill, D., 2005. Ratcheting Up: Linked Technology Adoption in Supply Chans, Industrial 

Relations, 44, 490-508. 

Siddiqui, C., Takashima, R., 2012. Capacity Switching Options Under Rivalry and Uncertainty, European 

Journal of Operational Research 222, 583-595. 

Sydsaeter, K., P. Hammond., 2006, Mathematics for Economic Analysis, Englewood Cliffs NJ, Prentice-

Hall.  

Weeds, H., 2002. Strategic Delay in a Real Options Model of R&D Competition. Review of Economic Studies 

69, 729-747. 

 


