
Real options game models of R&D competition

between asymmetric firms with spillovers

Chi Man Leung
Departmet of Mathematics,

City University of Hong Kong

Yue Kuen Kwok1

Department of Mathematics,
Hong Kong University of Science and Technology

Abstract

Using real options game models, we consider the characterization of strategic equilibria asso-
ciated with an asymmetric R&D race between an incumbent firm and an entrant firm in the
development of a new substitute product under market and technological uncertainties. The

random arrival time of the discovery of the patent protected innovative product is modeled as a
Poisson process. Input spillovers on the R&D effort are modeled by the change in the leader’s

hazard rate of success of innovation upon the follower’s entry into the R&D race. Asymmetry
between the two competing firms include sunk costs of investment, stochastic revenue flow rates

generated from the product, and hazard rates of success of R&D efforts of the two firms. Un-
der asymmetric duopoly, we obtain the complete characterization of the three types of Markov

perfect equilibria (sequential leader-follower, preemption and simultaneous entry) of the firms’
optimal R&D entry decisions with respect to various sets of model parameters. Our model shows

that under positive externalities where the input spillover is positive, preemptive equilibrium is
always ruled out in the R&D race due to the presence of dominant second mover advantage.

The two firms choose optimally to enter simultaneously if the sunk cost asymmetry is relatively
small; otherwise, the occurrence of sequential equilibrium is resulted. The condition where the
initial hazard rate is low relative to the level of input spillover would lead to the optimal choice

of simultaneous entry and signifies another scenario of dominant second mover advantage. How-
ever, when the initial hazard rate is sufficiently high so that the first mover advantage becomes

more significant, simultaneous equilibrium is ruled out even under high level of positive input
spillover.

1 Introduction

In analyzing R&D (Research and Development) race between competing firms in the discovery of
a new product, the key features include market and technological uncertainties, spillovers in R&D
effort, and strategic competition between the rival firms. Here, market uncertainty refers to the
uncertainty over the future stochastic revenue flow rate generated from the new innovative product.
The technological uncertainty is related to the random arrival time of success of the R&D effort in
the development of the new product. For spillover effects on R&D, output spillovers are characterized
by imperfect appropriability of the revenue generated from the innovation that occurs in the product
market after the completion of the R&D race. For input spillovers, research activities conducted
in one firm may influence the research activities of other rival firms, and the externality effect can
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be positive or negative. There are various possible modes of input spillovers under which positive
externalities may arise from the research efforts of the rival firms. In terms of informational spillovers,
the research personnel across various firms may discuss among themselves topics of mutual interest, or
research results may be disseminated through various public channels, like publications and seminars.
Also, the physical movement of research personnel from one firm to another firm may give rise to
knowledge and expertise transfer. In addition, one firm may observe the actions of its competitors
and learns from the experience of these actions. On the other hand, negative input spillovers may
arise due to congestion effects, say, firms are competing for skilled research personnel.

The analysis of R&D races with spillovers has been well explored in the literature. Under positive
input spillovers, Kamien et al. (1992) analyze the effects of R&D cartelization and research joint
ventures on firms that are engaged in R&D competitions in the product market. They show that the
costs of production tend to decrease with R&D cartelization, thus creating public-good effect. Also,
both consumer and producer surpluses are improved, through elimination of duplication effects and
positive effects of economies of scale. In a later work, Kamien and Zang (2000) observe that the rate
of spillover depends on imitators’ level of R&D efforts. In their R&D race model, they assume that
a firm’s own R&D effort improves its absorptive capacity to realize spillovers from other firms’ R&D
activity. The positive effect of absorptive capacity may offset the negative effect of providing spillovers
to rival firms. The stochastic extension of these earlier deterministic models of input spillovers and
imperfect appropriability has been performed by Miyagiwa and Ohno (2002) and Martin (2002),
where uncertainty of the arrival of innovation is modeled by a hazard rate process. The strategic
aspects of licensing and impact on social welfare are analyzed in these papers. Hauenschild (2003)
considers the impact of input and output spillovers when the R&D projects are risky. He argues
that since the loser in the R&D race suffers from loss in profit in the product market, so there is a
strong incentive to expand R&D effort. In addition, the winner also benefits from the rival’s R&D
expenditure, so a higher input spillover rate enforces a stronger incentive on R&D. Zhou (2006)
examines the effects of uncertainty and spillovers on R&D expenditure. He argues that a higher
spillover rate decreases the effectiveness of R&D spending due to the public-good effect. However,
since the expected prize of innovations increases with increased R&D efforts, the larger pie effect may
offset the public-good effect. These works, however, have not included the consideration of economic
uncertainty of the stochastic revenue flows generated from the R&D innovations.

Investment decisions on risky projects with stochastic revenue flows have been commonly analyzed
via the real options approach (Dixit and Pindyck, 1994) using an analogy with a financial call
option of the right to invest at an optimal timing. Real options games arise when real options of
investment decisions are combined with competitive interactions between rival firms. There has been
a substantial literature on investment decisions analyzed under the real options game framework. In
the pioneering work by Fudenberg and Tirole (1985), they establish the use of the concept of rent
equalization in the characterization of preemptive equilibrium in a duopoly. Later works by Pawlina
and Kort (2006) and Kong and Kwok (2007) deal with real options game models under asymmetric
duopoly of investment competitions and subject to economic uncertainty of the future revenue flows.

The adoption of the real options game approach in analyzing R&D competition is rather limited
in the literature. The first work is initiated by Weeds (2002), in which she considers an irreversible
investment on R&D effort between two symmetric firms. Her model assumes stochastic revenue flows
and uncertainty of arrival of innovation, with no spillovers of R&D efforts. Depending on the model
parameter values, two types of non-cooperative equilibria appear under her symmetric duopoly real
options game model. Her model reveals that when preemptive leader-follower equilibrium occurs,
real option values of both firms are undermined due to fear of preemption. Otherwise, equilibrium of
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delayed simultaneous entry of the two firms prevails, where each firm holds back from R&D investing
in the fear of starting a keen race. In an extended real options game model of R&D race, Femminis
and Martini (2008) incorporate inter-firm spillovers by assuming a reduction of R&D cost for the
follower. They show that the follower firm’s optimal strategy is to invest on R&D once it can attain
the spillover and the resulting spillovers reduce the difference between the leader’s and follower’s
value functions.

Our real options game model of R&D competition extends both the models of Weeds (2002) and
Femminis-Martini (2008) in several aspects. First, we assume asymmetric firms instead of identical
firms, with asymmetry in sunk costs of R&D investment, stochastic revenue flow rates, and hazard
rates of success of innovation. Unlike earlier works that model input spillovers by assuming cost
reduction in R&D effort or effective research intensity, we incorporate the input spillover effects on
the hazard rates of arrival of innovation of both firms. We assume that the leader’s hazard rate of
success of innovation jumps to a new value (which can be above or below the original value) upon
optimal entry of the follower firm into the R&D race. The positive jump in the hazard rate (positive
spillover) indicates that the follower firm’s R&D effort contributes to the leader’s R&D progress,
say, through exchange of information among researchers in the two firms. On the other hand,
negative spillover may be resulted when the two firms are competing for research personnel. Instead
of assuming a winner-takes-all patent system in Weeds (2002), we allow the flexibility of choosing
different appropriability factors in the stochastic revenue flow rate of the two competing firms upon
the delivery of the innovative substitute product. Our model does allow output spillovers of imperfect
appropriability of the revenue flow generated by the innovation. Under the restricted assumption
of symmetry in costs and hazard rates, Weeds’ model reveals only two types of equilibrium: (i)
preemptive leader-follower equilibrium where real option values of both firms are reduced due to
competition, (ii) simultaneous delayed R&D entry to avoid a keen R&D race. By allowing asymmetry
in costs, revenue flows, hazard rates and input spillover effects, our real R&D race model provides a
richer set of optimal strategies adopted by the two competing firms. Specifically, our model shows
that sequential leader-follower equilibrium may be resulted under positive spillovers and high level
of cost asymmetry. In terms of policy implication, our model provides the insight that some form of
tacit collusion may help minimize inefficiencies generated in a preemptive game. While preemption
threat may undermine the second mover advantage, positive input spillovers resulted from delayed
follower entry enhances the second mover advantage. Also, technological uncertainty on the arrival
of innovation tends to mitigate the preemption incentive since the first mover that enters into R&D
is not guaranteed to be the first one that delivers the innovation. Compared to Weeds’ model, our
model helps shed more insight into better understanding of the phenomena in real options games and
follower strategies, extending the discussion in Cottrell-Sick (2002) on the second mover advantages
in investment games.

The paper is organized as follows. The model formulation of the strategic R&D race in an
asymmetric duopoly setting with spillovers is presented in the next section. Both the incumbent firm
and entrant firm (as the challenger) have the option to enter into R&D for a new substitute product
by investing an upfront sunk cost. In Section 3, we derive the value functions and the corresponding
trigger threshold values of the stochastic fundamental of revenue flow at which the firms are optimal
to enter into the R&D race either as the leader or follower. Once the value functions and trigger
threshold values are known, we deduce the optimal preemption strategies or simultaneous entry by
examining the sign properties of the preemption function (defined as the difference between the
preemption leader value function and the follower value function). In Section 4, we present the full
characterization of the three types of Markov perfect equilibria of their optimal entry decisions into
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the R&D race. In particular, we examine the impact of various parameter values, like the sunk
costs, hazard rate, etc. on the outcomes of the strategic games. In Section 5, we present plots of
the value functions and various figures that illustrate the characterization of strategic equilibria in
various parameter spaces. The last section contains conclusive remarks of the paper and discuss
the potential policy implications and insights that can be deduced from the analysis of strategic
equilibriums in our R&D real options game models.

2 Model formulation of strategic R&D races

We consider the model formulation of strategic R&D races in an asymmetric duopoly setting with an
incumbent firm (Firm i) and an entrant firm (Firm e) as the challenger. Both firms are assumed to
be risk neutral and they can borrow and lend freely at the constant interest rate r. The incumbent
firm is now serving a monopolized market with an existing product. Firm i receives the perpetual
stochastic revenue flow rate xt from operating the incumbent product, where the stochastic process
xt follows the Geometric Brownian Motion as governed by

dxt = µxt dt + σxt dZt. (2.1)

Here, σ is the constant volatility and Zt is the standard Brownian process. By following the usual
no-bubble condition, the constant drift rate µ is taken to be less than r (Dixit and Pindyck, 1994).

Both firms are assumed to have the option to operate their R&D effort in the innovation of a
new substitute product by investing an upfront sunk cost. Though continual R&D expenses would
normally incur during the research phase, the assumption of instantaneous sunk cost [also adopted
by Weeds (2002)] provides better analytic tractability in our R&D model. The decision to invest
in a R&D project is assumed to be irreversible and the corresponding fixed sunk cost for Firm j is
Kj , where j = i, e. The two sunk costs, Ki and Ke, are different in general. Both firms strive for
the discovery of the same substitute product. Also, we assume that the substitute product can be
launched without any further cost.

In our model, we assume that both the incumbent product and the substitute serve a similar
set of target customers so that the stochastic revenue flow rates generated by these two products
take the same form of the stochastic fundamental, except with different proportional multipliers.
The drive for enhanced substitute products that serve an almost identical group of customers has
been quite common in the consumer electronics industry. In general, the combined market size
of the incumbent and substitute products is larger than the original market size of the incumbent
product alone; otherwise, there will be no incentive for launching the R&D efforts. To model the
output spillover effects, the multipliers (appropriability factors) in the revenue flow rates generated
by the two products after the delivery of the substitute are chosen so as to reflect the appropriability
of the revenue flow rates from the products to the two competing firms. Besides investment cost
asymmetry, our model also assumes asymmetry between the two firms in their stochastic revenue
flow rates generated from operating the new product. When the incumbent firm (Firm i) wins the
R&D race (discovery of the new product and subsequent launching into the product market), the
total revenue flow rate received by Firm i from operating the two products is (1 + π+

i )xt, where
π+

i > 0. Here, π+
i xt represents the additional revenue flow rate from operating two products for Firm

i. On the other hand, suppose the entrant firm wins the R&D race, the revenue flow rate received
by Firm e is πext, where πe > 0. Now the product market is operated in duopoly with two products
and this causes a drop in the revenue flow rate of Firm i from xt to (1 − π−

i )xt, where 0 ≤ π−
i < 1.
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Here, π−
i xt represents the drop in the revenue flow rate for Firm i due to the loss of monopoly in

the product market. It is reasonable to set πe > π−
i so that the combined market size of the two

products is larger than the incumbent product alone.
In this duopoly R&D race between the incumbent and entrant firms, the two firms face both

technological and market uncertainty. The success of innovation by an active firm entering into
R&D is assumed to occur according to a Poisson distribution with constant hazard rate. The two
Poisson processes are assumed to be mutually independent and independent of the revenue flow
process xt. The earlier entry by a firm into the research phase may not guarantee the firm to be
the eventual winner of the R&D race. The modeling of the arrival of innovation by a simple Poisson
process exhibits the undesirable memoryless property. Also, it does not take into account that the
firm’s knowledge accumulation and continual R&D expenses would affect the hazard rate of arrival
of R&D success. Like most of the earlier works on R&D races, we choose to assume a simple Poisson
process for the arrival of R&D success for achieving analytic tractability in our analysis.

A firm may enter into the R&D race as the follower (either as the optimal choice of its own or
being preempted) provided that discovery of the innovative product has not occurred. There also
exists the possibility that the two firms enter simultaneously into the R&D race. Next, we show
how to introduce input spillover effects into our model of R&D race. Let hj denote the constant
hazard rate of the Poisson arrival of discovery of Firm j, j = i, e, when only one firm is operating
in the research phase. When both firms have launched the research efforts into the discovery of the
innovative product, our model assumes that the input spillover effects lead to a change in the hazard
rate of the Poisson arrival of discovery from hj to ĥj , j = i, e. Note that ĥj can be lower or higher
than hj , corresponding to positive or negative spillover, respectively. The transition rates diagrams
shown in Figure 1 summarize (i) the stochastic revenue flow rates of the two firms at the initial time
and arrival time of success of innovation, (ii) the hazard rates of arrival of R&D success of the two
firms either as the leader or follower.

Compared to the real options game model of R&D race of Weeds (2002) with symmetry in costs
and hazard rates, we introduce asymmetries in sunk costs, status of the firms as incumbent and
entrant, hazard rates and spillover effects. Following similar assumptions made by Weeds (2002), the
initial value of the stochastic revenue flow rate process x0 is sufficiently low so that an immediate
entry leads to negative expected return, thus none of the firms has entered into R&D. Also, the two
firms are assumed to adopt the Markov strategies, where the strategic moves are time invariant and
they are dependent on the current state of xt only. Once a firm has launched the sunk cost of R&D,
the research into the innovative discovery continues for all times until the real options game ends
with the discovery of the new substitute product by one of the firms.

3 Value functions and investment thresholds

In this section, we derive the value functions and the trigger threshold values of optimal entry
into R&D race of Firm i (incumbent) and Firm e (entrant) under various scenarios. The standard
Bellman’s optimality approach of solving the associated optimal stopping problems is adopted. As
the first step, we find the value functions when the two firms have adopted their respective role as
either the leader or follower. Once the leader value function and follower value function are known,
we can examine the preemption strategies by analyzing the behavior of the preemption function
(defined as the difference of the leader value function and follower value function). We then consider
the preemptive leader value function of each firm. Suppose none of the two firms have entered into
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the R&D phase and the competition for entry is keen, one of the two firms may choose to preempt
strategically its rival at a threshold level that is below its own optimal leader threshold. In this
case, the corresponding preemptive leader value function does not observe the optimal stopping rule.
Lastly, we consider the value functions and optimal thresholds under simultaneous entry where the
firm would adopt optimal follower entry immediately once the rival firm chooses strategically to
invest into R&D. As in most dynamic programming problems, we adopt the backward induction
procedure where the value functions are solved backwards in time.

3.1 Revenue value functions when both firms have started R&D

To implement the backward induction procedure, we start with the scenario where both firms have
initiated their R&D efforts by paying the corresponding sunk cost of investment. We are interested
to derive the value functions when both firms have not succeeded in the discovery of the product.
Since the two firms are asymmetric in the revenue flows and investment costs, it is necessary to
determine the value function of each firm separately.

Let t be the current time and we use Et to denote the expectation conditional on information
available at time t and the stochastic state variable xt assumes the value x. Let Ri(x) and Re(x)
denote the expected revenue value function of Firm i and Firm e, respectively, when both firms
are active in R&D but the discovery of the product has not been made by either firm. The value
functions are stationary with no dependence on t since perpetuality of the real options game model
is assumed. The arrival of the success of discovery by either firm is assumed to be a Poisson event
with constant hazard rate. These two Poisson arrivals of discovery are assumed to be independent
of each other and also independent of the stochastic fundamental xt.

Determination of Re(x)
The value function Re(x) is computed by finding the expected value of the revenue flow received by
Firm e when it is the final winner of the R&D race. Let τe and τi denote the random time of arrival
of discovery of Firm e and Firm i, respectively. Assuming that τe and τi are independent and τe < τi

(Firm e is the final winner), we obtain the following differential expected value of revenue flow to be
received by Firm e at time t prior to the success of discovery by either firm

dRe(x|τe < τi, t < min{τe, τi}, τe ∈ (u, u + du), τi ∈ (v, v + dv))

= e−ĥi(v−t)e−(ĥe+r)(u−t)ĥiĥeEt

[
∫ ∞

u

e−r(s−u)πexs ds

]

dudv

= e−ĥi(v−t)e−(ĥe+r−µ)(u−t)ĥiĥeEt

[

πexu

r − µ

]

dudv, t < u < v < ∞.

Here, e−ĥi(v−t) and e−ĥe(u−t) give the respective probability that Firm i and Firm e have not been
successful in R&D by time u and time v. Correspondingly, we have P [τi ∈ (v, v+dv)] = e−ĥi(v−t)ĥi dv

and P [τe ∈ (u, u + du)] = e−ĥe(u−t)ĥe du. Also, note that e−r(u−t)
Et

[

πexu

r − µ

]

gives the discounted

expected value of the perpectual revenue flow received by the entrant firm if it is the winner at time
u. By integrating dRe(x|·) over the domain in the u-v plane, where t < u < v < ∞, Firm e’s expected
revenue function Re(x) is found to be

Re(x) =

∫ ∞

t

∫ v

t

dRe(x|.) dudv =
ĥeπex

(r − µ)(r − µ + ĥi + ĥe)
. (3.1)
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Determination of Ri(x)
In a similar manner, we compute Ri(x) by finding the net gain in the expected value of the revenue
flow received by Firm i, noting that it may win or lose in the R&D race. Recall that the gain in
revenue flow rate is π+

i xs when Firm i wins while the corresponding loss is π−
i xs when it loses, where

s > min{τe, τi}. The value function Ri(x) is easily deduced to be

Ri(x) =
(ĥiπ

+
i − ĥeπ

−
i )x

(r − µ)(r − µ + ĥi + ĥe)
. (3.2)

3.2 Follower value functions

Suppose the rival firm has entered into the R&D phase as leader, we would like to determine the
corresponding follower value function. The follower value function consists of two parts, depending
on whether the follower firm is still waiting for its optimal entry into R&D or it has committed the
R&D cost. Suppose Firm j, j = i, e, serves as the follower, it enters into the R&D race optimally
at the optimal threshold x∗

jf at the optimal stopping time t∗jf . The follower value function of Firm j

takes the form

Fj(x) =

{

F
(1)
j (x), x < x∗

jf

Rj(x) − Kj , x ≥ x∗
jf

, j = i, e. (3.3)

Here, F
(1)
j (x) is the option value of waiting as follower for Firm j prior to its optimal entry. As in

typical optimal stopping models, the continuation value function F
(1)
j (x) observes the value matching

condition and smooth pasting condition at x∗
jf .

Determination of F
(1)
e (x) and x∗

ef

Based on the strong Markov property and time homogeneity of the underlying stochastic process xt,
we obtain

F (1)
e (x) = sup

tef≥t

Et

[

e−(r+hi)(tef−t)[Re(xtef
) − Ke]

]

= Et

[

e−(r+hi)(t
∗

ef−t)
]

[

Re(x
∗
ef ) − Ke

]

, x < x∗
ef .

The usual discount factor e−r(t∗
ef

−t) is now modified by introducing an extra multiplicative factor
e−hi(t

∗

ef−t) since the expectation is taken conditional on no discovery by the rival firm (Firm i) within
the time period (t, t∗ef). It can be shown that

Et

[

e−(r+hi)(t
∗

ef
−t)
]

=

(

x

x∗
ef

)βi

,

where βi is the positive root of the following quadratic equation:

σ2

2
β2 +

(

µ −
σ2

2

)

β − (r + hi) = 0.

The value matching condition is obviously satisfied by Fe(x) at x = x∗
ef . The optimal threshold x∗

ef

can be determined by invoking the smooth pasting condition, where

dF
(1)
e (x)

dx
|x=x∗

ef
=

d

dx
[Re(x) − Ke] |x=x∗

ef
.
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We then obtain

x∗
ef =

βi

βi − 1

Ke

ĥeπe

(r − µ)(r − µ + ĥi + ĥe), (3.4a)

and F
(1)
e (x) can be simplified to become

F (1)
e (x) =

(

x

x∗
ef

)βi

Ke

βi − 1
, x < x∗

ef . (3.4b)

Determination of F
(1)
i (x) and x∗

if

When Firm e has initiated R&D effort as leader, the revenue flow rate received by Firm i will be
undermined by the amount π−

i xs, where s > τe, when Firm e succeeds in discovery of the product.
First, assuming that Firm i never enters into the R&D race, the expected loss of revenue flow received
by Firm i conditional on discovery delivered by the rival firm (Firm e) is given by

Et

[
∫ ∞

t

e−(he+r−µ)(u−t) heπ
−
i xu

r − µ
du

]

=
heπ

−
i x

(r − µ)(r − µ + he)
.

Indeed, the above formula can be deduced from Eq. (3.1) by changing πe to π−
i (“gain for the

entrant” is modified to “loss for the incumbent”) and dropping ĥi (since there is no entry of Firm
i). We are concerned with the expected loss of revenue faced by Firm i from time t to t∗if , which is
then given by

heπ
−
i

(r − µ)(r − µ + he)



x −

(

x

x∗
if

)βe

x∗
if



 ,

where βe is the positive root of the following quadratic equation:

σ2

2
β2 +

(

µ −
σ2

2

)

β − (r + he) = 0.

Combining the option value of waiting to enter at the optimal threshold x∗
if as follower and the

expected loss of revenue due to potential R&D success of the rival firm, the follower value function
of Firm i prior to entry into R&D investment is given by

F
(1)
i (x) = sup

tif≥t

Et

[
∫ tif

t

e−(r+he)(u−t) heπ
−
i xu

r − µ
du + e−(r+he)(tif−t)[Ri(xtif ) − Ki]

]

=

(

x

x∗
if

)βe

[

Ri(x
∗
if) − Ki]

]

−
heπ

−
i

(r − µ)(r − µ + he)



x −

(

x

x∗
if

)βe

x∗
if



 , x < x∗
if . (3.5)

The optimal threshold x∗
if is determined by applying the smooth pasting condition at x∗

if , which
is found to be

x∗
if =

βeKi

βe − 1

1
heπ−

i

(r−µ)(r−µ+he)
+

ĥiπ
+

i −ĥeπ−

i

(r−µ)(r−µ+ĥi+ĥe)

. (3.6)
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3.3 Leader value functions

We would like to determine the leader value function of each firm where the firm adopts the role as
the leader. The derivation of the leader value functions is complicated by the potential entry of the
rival firm as the follower at a later time. Once the entry of the rival firm as follower occurs, both
firms have initiated R&D and the true R&D race commences. In this case, the value function of
Firm j becomes Rj(x) − Kj , j = i, e. Therefore, the leader value function consists of 3 segments:
(i) x < x∗

jl, (ii) x∗
jl ≤ x < x∗

j′f , (iii) x ≥ x∗
j′f , where x∗

jl is the optimal leader threshold of Firm j,
and x∗

j′f is the optimal follower threshold of Firm j′. Note that j′ = e when j = i and j′ = i when
j = e. Here, we derive the leader value function under the assumption that x∗

jl < x∗
j′f . The scenario

where x∗
jl ≥ x∗

j′f indicates that Firm j has relatively lower first mover advantage when compared to
its rival. Under this scenario, it will be shown in the next section that the optimal strategy followed
by Firm j is either entry as follower or simultaneous entry with the rival, so Firm j will not choose
to enter optimally as the leader. In other words, when x∗

jl ≥ x∗
j′f , the leader value function of Firm

j is not meaningfully defined. We write Lj(x) as the leader value function of Firm j, which consists
of 3 separate segments:

Lj(x) =











L
(1)
j (x), x < x∗

jl

L
(2)
j (x), x∗

jl ≤ x < x∗
j′f

Rj(x)− Kj , x ≥ x∗
j′f

, j = i, e. (3.7)

Determination of L
(1)
e (x), L

(2)
e (x) and x∗

el

Without the potential entry of Firm i as the follower, the value function of Firm e after its optimal
entry as the leader is seen to be

heπex

(r − µ)(r − µ + he)
−Ke.

However, the leader value function will be undermined by the entry of Firm i as follower at a later
time t∗if . By summing the expected revenues received by Firm e over the successive periods [t, t∗if)
and [t∗if ,∞), we deduce that

L(2)
e (x) =

heπe

(r − µ)(r − µ + he)



x −

(

x

x∗
if

)βe

x∗
if





+
ĥeπe

(r − µ)(r − µ + ĥi + ĥe)

(

x

x∗
if

)βe

x∗
if − Ke

=

(

x

x∗
if

)βe

dex
∗
if +

heπex

(r − µ)(r − µ + he)
− Ke, x∗

el ≤ x < x∗
if , (3.8a)

where

de =
ĥeπe

(r − µ)(r − µ + ĥi + ĥe)
−

heπe

(r − µ)(r − µ + he)
. (3.8b)

The value matching condition (but not the smooth pasting condition) is observed at x = x∗
if .
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Once L
(2)
e (x) has been determined, the option value of waiting L

(1)
e (x) prior to the optimal entry

at x∗
el is deduced to be

L(1)
e (x) =

(

x

x∗
el

)β0

L(2)
e (x∗

el), x < x∗
el, (3.9a)

where β0 is the positive root of the following quadratic equation:

σ2

2
β2 +

(

µ −
σ2

2

)

β − r = 0.

Lastly, the optimal leader threshold x∗
el is determined by applying the smooth pasting condition at

x∗
el. The resulting algebraic equation in z for the determination of x∗

el is given by

de(βe − β0)

(x∗
if)

βe−1
zβe −

(β0 − 1)heπe

(r − µ)(r − µ + he)
z + β0Ke = 0. (3.9b)

Unfortunately, explicit closed form solution to x∗
el cannot be obtained.

Determination of L
(1)
i (x), L

(2)
i (x) and x∗

il

In a similar manner, the incumbent’s leader value function after its optimal leader entry is deduced
to be

L
(2)
i (x) =

(

x

x∗
ef

)βi

dix
∗
ef +

hiπ
+
i x

(r − µ)(r − µ + hi)
− Ki, x∗

il ≤ x < x∗
ef , (3.10a)

where

di =
ĥiπ

+
i − ĥeπ

−
i

(r − µ)(r − µ + ĥi + ĥe)
−

hiπ
+
i

(r − µ)(r − µ + hi)
. (3.10b)

Also, the incumbent’s option value of waiting prior to its optimal entry as the leader takes the form

L
(1)
i (x) =

(

x

x∗
il

)β0

L
(2)
i (x∗

il), x < x∗
il. (3.11a)

Again, the optimal leader threshold x∗
il is determined by applying the smooth pasting condition at

x∗
il. Similarly, the resulting algebraic equation in z for the determination of x∗

il is given by

di(βi − β0)
(

x∗
ef

)βi−1
zβi −

(β0 − 1)hiπ
+
i

(r − µ)(r − µ + hi)
z + β0Ki = 0. (3.11b)

Remark
The first term in L

(2)
e (x) [see Eq.(3.8a)] represents the expected discount factor Et[e

−(r+he)(t∗
if
−t)] =

(

x
x∗

if

)βe

applied over the time period (t, t∗if), which is then multiplied by the change in value dex
∗
if

arising from the potential entry of the incumbent as follower at x∗
if . The parameter de can be

interpreted as Firm e’s externality factor that is directly related to the input spillover effect. When
de > 0, the entrant benefits from the follower entry of the incumbent. More precisely, we have

de > 0 ⇔ ĥe − he >
heĥi

r − µ
; (3.12a)
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so positivity of de implies that the increase of the entrant’s hazard rate of arrival of discovery arising
from the R&D spillover effect outweighs the potential loss in value when the R&D race is lost to the
incumbent firm which has entered as the follower. Similar argument of externalities of follower entry
on the incumbent’s leader value L

(2)
i can be applied. To achieve positivity of Firm i’s externality

factor di, one requires an increase of the incumbent’s hazard rate due to R&D spillover effect of
sufficient amount as indicated by the following relation:

di > 0 ⇔ ĥi − hi >
hiπ

+
i + (r − µ + hi)π

−
i

(r − µ)π+
i

ĥe. (3.12b)

3.4 Preemption strategies

It may occur that Firm j is strategically advantageous to preempt its rival by choosing entry as
the leader even at level x that is below its leader optimal threshold x∗

jl. Accordingly, we define

the preemptive leader value function L
(p)
j (x) is taken to be the same as L

(2)
j (x) while the interval of

definition is extended from [x∗
jl, x

∗
j′f) to [0, x∗

j′f ). Obviously, preemption strategy is adopted only when
the firm’s leader value is indifferent to or higher than its follower value. To characterize preemption
strategies, consider the behavior of the preemption function φj(x) as defined by

φj(x) = L
(p)
j (x) − Fj(x), j = i, e, 0 ≤ x < x∗

j′f . (3.13)

Note that φj(x) is convex in x and φj(0) < 0. Since φj(x) involves only linear and power functions in
x, it is straightforward to show that φj(x) has either no root, one root or two roots within [0, x∗

j′f).
In order that Firm j chooses to preempt its rival at some threshold z, a necessary condition (though
not sufficient) is given by φj(z) > 0. We consider these 3 separate cases as follows:

(i) No root or one root at x̂j with φ
′

j(x̂j) = 0
One deduces that

L
(p)
j (x) ≤ Fj(x) for x ∈ [0, x∗

j′f ),

so Firm j never chooses to preempt.

(ii) One root at xjp, where φ
′

j(xjp) 6= 0 and 0 < xjp < x∗
j′f

We have
L

(p)
j (x) > Fj(x) for x ∈ (xjp, x

∗
j′f ).

In this case, it may be possible that Firm j chooses to preempt its rival in (xjp, x
∗
j′f ) as an

optimal strategy.

(iii) Two roots at xjp and xjp, where 0 < xjp < xjp < x∗
j′f

Similarly, it may be possible that Firm j chooses preemption as an optimal strategy in (xjp, xjp),

within which L
(p)
j (x) > Fj(x).

In summary, preemption strategy is never adopted by Firm j if L
(p)
j (x) < Fj(x), 0 ≤ x < x∗

j′f .
For example, when dj ≥ 0, one can show that

L
(p)
j (x) − Fj(x) = djx





(

x

x∗
j′f

)βi−1

− 1



 < 0, j = i, e, 0 ≤ x < x∗
j′f .
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Therefore, non-negativity of dj , j = i, e, is seen to be a sufficient condition for Firm j not to adopt
preemption strategy at any level x. This result can be explained using economic intuition as follows.
When the input spillover effect for Firm j is sufficiently strong (as dictated by dj ≥ 0), the second
mover advantage prevails for Firm j so it never chooses to adopt preemption strategy.

3.5 Simultaneous entry of both firms

Suppose the input spillover effects are sufficiently strong so that the second mover advantage prevails
for both firms, none of the two firms chooses to enter as leader in the R&D race. In this case,
the two firms choose to invest into R&D simultaneously as their joint optimal strategies. As the
game is non-cooperative, simultaneous entry commences when one firm (Firm j) chooses optimally
to invest at level x while the rival firm (Firm j′) finds that it is also optimal to invest at the same
level. Weeds (2002) uses the analogy of the behavior of the contestants in a long-distance race to
describe such non-cooperative collusion between the competing firms. We would like to determine
the optimal simultaneous entry threshold x∗

js of Firm j, j = i, e, given that the conditions for optimal
simultaneous entry are met (see Sec. 4.1 for the detailed discussion of these conditions).

Suppose the incumbent firm invests optimally at level z while optimal entry is followed immedi-
ately by the entrant firm, the incumbent’s value function at z is given by Ri(z) − Ki. The option

value of waiting at x < z prior to its optimal simultaneous entry is given by [Ri(z) − Ki]
(

x
z

)β0. Note
that the simultaneous entry threshold cannot be lower than x∗

ef ; otherwise, simultaneous equilib-
rium cannot be substained since Firm e chooses not to follow immediately. On the other hand, the

simultaneous entry threshold is chosen such that the option value [Ri(z) − Ki]
(

x
z

)β0 is maximized.
Therefore, the simultaneous entry threshold x∗

is as dictated by the incumbent is determined by

x∗
is = arg maxz∈[x∗

ef
,∞) [Ri(z)− Ki]

(x

z

)β0

= max

{

β0

β0 − 1

Ki

bi

, x∗
ef

}

, (3.14a)

where

bi =
ĥiπ

+
i − ĥeπ

−
i

(r − µ)(r − µ + ĥi + ĥe)
.

In a similar manner, the optimal simultaneous entry threshold as dictated by the entrant can be
deduced to be

x∗
es = arg maxz∈[x∗

if ,∞) [Re(z) − Ke]
(x

z

)β0

= max

{

β0

β0 − 1

Ke

be

, x∗
if

}

, (3.14b)

where

be =
ĥeπe

(r − µ)(r − µ + ĥi + ĥe)
.

One would expect that x∗
is ≥ x∗

ef and x∗
es ≥ x∗

if , properties that are consistent with the conditions for

the occurrence of optimal simultaneous entry. Note that β0 > βj so that
β0

β0 − 1
>

βj

βj − 1
, j = i, e.

We then have

x∗
js = max

{

β0

β0 − 1

Kj

bj

, x∗
j′f

}

≥
β0

β0 − 1

Kj

bj

≥
βj′

βj′ − 1

Kj

bj

= x∗
jf , j = i, e, j′ 6= j.
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Together with x∗
js ≥ x∗

j′f , we then have

x∗
js > max{x∗

jf , x
∗
j′f}, j = i, e. (3.15)

The corresponding value function of Firm j, j = i, e, that follows this joint optimal strategies is seen
to be

Jj(x) =

{

[

Rj(x
∗
js) −Kj

]

(

x
x∗

js

)β0

, x < x∗
js,

Rj(x)− Kj , x ≥ x∗
js.

(3.16)

As a final remark, the two firms do not cooperate to enter into R&D race at the same threshold
level. Rather, optimal simultaneous entry occurs when one firm enters optimally while the rival
firm responds optimally to adopt an immediate entry at the same threshold. When simultaneous
equilibrium prevails, both firms jointly invest at the simultaneous entry threshold, where the smaller
value among x∗

is and x∗
es is taken due to non-cooperation between the two firms.

4 Analysis of strategic equilibria

Recall that there are 3 types of equilibria of the firms’ strategies. The first type is the preemptive
equilibrium where both firms have an incentive to become the leader. The other type is the sequential
equilibrium where one firm dominates its rival in the sense that it chooses its optimal leader’s entry
strategy without preemptive threat of its rival. The last type is the simultaneous equilibrium where
the two firms optimally choose to enter at the same threshold, one firm’s optimal entry is followed
immediately by the optimal entry of its rival.

In Sec. 4.1, we consider the categorization of strategic equilibria that is based on the relative
magnitudes of the leader and follower thresholds of the two firms. In our strategic R&D race model,
we assume that the input spillovers have impact on the follower’s R&D hazard rate of discovery but
not on follower’s R&D cost. However, the existence of upfront R&D cost asymmetry between the
two firms does have strong influence on the strategic games. In Sec. 4.2, we characterize the various
types of equilibria of the firms’ strategies with regard to the upfront R&D costs. One may visualize
that first mover advantage may be lost when the hazard rate of discovery is relatively low. In Sec.
4.3, we examine the impact of hazard rates on the strategic equilibria.

4.1 Optimal entry thresholds and strategic games

We consider the following two mutually exclusive cases (i) at least one firm has dominant first mover
advantage over its rival, so simultaneous equilibrium is precluded. This results in a leader-follower
game and it may give rise to either preemptive or sequential equilibrium; (ii) none of the two firms
has dominant first mover advantage over its rival. Case (i) occurs when x∗

il < x∗
ef or x∗

el < x∗
if or

both, while case (ii) occurs when x∗
il ≥ x∗

ef and x∗
el ≥ x∗

if . Figure 2 shows the schematic diagram
that summarizes the categorization of the various forms of equilibrium.

Leader-follower games resulting in either preemptive or sequential equilibrium

When the leader threshold of one firm (say, Firm j) is lower than the rival firm’s (Firm j′) follower
threshold, where x∗

jl < x∗
j′f , it becomes certain that Firm j adopts its optimal leader entry at x∗

jl

unless preemption strategy has been adopted earlier by itself or the rival firm at some lower threshold.
If Firm j′ does not choose to be the preemptive leader, then it would delay its follower entry until
the higher follower threshold x∗

j′f is reached at some later time. The possibility of simultaneous entry
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where Firm j′ enters as follower immediately after leader entry by Firm j is thus precluded. When
both firms have the first mover advantage, where x∗

il < x∗
ef and x∗

el < x∗
if , a similar argument shows

that simultaneous equilibrium arising from the action of either firm is precluded. In conclusion, when
x∗

il < x∗
ef or x∗

el < x∗
if or both, then (i) either one of the two firms enters as the preemptive leader

(preemptive equilibrium) or (ii) the two firms enter sequentially as leader and follower (sequential
equilibrium) at their respective optimal entry thresholds.

We consider the following two separate cases: (1) only one firm has the first mover advantage (its
optimal leader threshold is lower than its rival’s optimal follower threshold), (2) both firms have the
first mover advantage, that is, x∗

il < x∗
ef and x∗

el < x∗
if .

1. Only one firm exhibits the first mover advantage: x∗
jl < x∗

j′f , where Firm j can be either Firm
i or Firm e

We examine whether Firm j′ has preemption incentive by considering the number and location
of roots of φj′(x). If Firm j′ is shown to have no preemption incentive, then sequential equilib-
rium is resulted with Firm j as the leader. Otherwise, we compare the preemption incentive of
both firms and the one with the stronger preemption incentive becomes the preemptive leader.
The loser firm chooses to enter at its optimal follower threshold under preemptive equilibrium.

(i) When φj′(x) has no root or only one root at x̂j′ with φ
′

j′(x̂j′) = 0, then φj′(x) ≤ 0. In
this case, Firm j′ never chooses to preempt so sequential equilibrium is resulted. That
is, Firm j enters optimally as the leader at x∗

jl while Firm j′ enters later at its optimal
follower threshold x∗

j′f .

(ii) When φj′(x) has one root at xj′p and φ′
j′(xj′p) 6= 0, we compare the relative values of

x∗
jl and xj′p. Sequential equilibrium is resulted if x∗

jl ≤ xj′p since Firm j has chosen to
enter optimally at x∗

jl before Firm j′ has the incentive to preempt at the higher threshold
xj′p. On the other hand, when xj′p < x∗

jl, preemptive equilibrium is resulted as sequential
equilibrium is precluded. Subsequently, there are four possible forms of preemptive com-
petition, depending on the number of roots of φj(x) and the relative position of x∗

jl with
respect to these roots.

(a) Suppose φj(x) has only one root, then Firm j′ chooses to epsilon-preempt Firm j by
adopting entry at x∗

jl − ε, provided that x∗
j′f < x∗

jf .

(b) Suppose φj(x) has two roots xjp and xjp, then there are 3 possible outcomes:

· If xjp < x∗
jl, then Firm j′ chooses to epsilon-preempt Firm j at x∗

jl − ε, ε → 0+,
as the preemptive leader.

· If xj′p < xjp < x∗
jl ≤ xjp, then Firm j′ chooses to epsilon-preempt Firm j at the

threshold xjp − ε.

· If xjp < xj′p < x∗
jl ≤ xjp, then Firm j chooses to epsilon-preempt Firm j′ at the

threshold xj′p − ε.

The comprehensive discussion of these various forms of preemptive equilibrium can be
found in Leung (2011).

(iii) When φj′(x) has two roots at xj′p and xj′p, where xj′p < xj′p, we examine the following 3
cases: x∗

jl ≤ xj′p, xj′p < x∗
jl < xj′p, or xj′p ≤ x∗

jl. When x∗
jl ≤ xj′p, sequential equilibrium

is resulted. When xj′p < x∗
jl < xj′p, we examine the relative values of xjp and xj′p. By

following the standard epsilon-preemption arguments in Fudenberg and Tirole (1985),
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the firm which has the lower preemption threshold is the preemptive leader. Also, the
preemptive leader chooses to epsilon-preempt its rival at the rival’s preemption threshold
(which is higher than its own preemption threshold). Lastly, when xj′p ≤ x∗

jl, since
φj′(x) ≤ 0 when x ∈ [xj′p, x

∗
jl), so it can be shown that it is non-optimal for Firm j′

to preempt Firm j at any threshold lower than x∗
jl. Therefore, sequential equilibrium is

resulted with Firm j entering as leader at its optimal leader threshold x∗
jl and Firm j′

entering later as follower at its optimal follower threshold x∗
j′f .

2. Both firms exhibit the first mover advantage: x∗
il < x∗

ef and x∗
el < x∗

if

First, we identify the firm with the stronger first mover advantage (the firm that has a lower
optimal leader threshold). Let m be the firm such that

x∗
ml = min{x∗

il, x
∗
el},

and Firm m′ be its rival. The analysis of strategic competition would be similar to that
of case (1), where Firm m plays the same role as Firm j (the only firm that has the first
mover advantage). In a similar manner, sequential equilibrium is resulted when Firm m′ has
no preemption incentive [that is, φm′(x) ≤ 0]. Otherwise, we examine the various forms of
preemptive equilibria, depending on the relative value of x∗

ml and the nature of roots of φm(x)
and φm′(x).

Absence of first mover advantage in both firms resulting in simultaneous equilibrium

Under the scenario where x∗
il ≥ x∗

ef and x∗
el ≥ x∗

if , sequential equilibrium is precluded so that either
preemptive equilibrium or simultaneous equilibrium is resulted. Now, we establish that neither firm
would choose to preempt its rival at any threshold that is lower than the rival’s optimal follower
threshold. To show the claim, we compare the Firm j’s preemptive leader value function at z,
where z < x∗

j′f , with the firm’s option value of waiting when firm j’s entry is deferred to the higher
simultaneous entry threshold level at min{x∗

is, x
∗
es}, where min{x∗

is, x
∗
es} > max{x∗

if , x
∗
ef}. Since

z < x∗
j′f < x∗

jl and x∗
j′f ≤ min{x∗

is, x
∗
es}, so

L
(p)
j (z) < L

(p)
j (x∗

j′f )

(

z

x∗
j′f

)β0

=
[

Rj(x
∗
j′f) −Kj

]

(

z

x∗
j′f

)β0

≤ [Rj(min{x∗
is, x

∗
es}) − Kj]

(

z

min{x∗
is, x

∗
es}

)β0

.

Therefore, it is always non-optimal for Firm j to preempt its rival at any threshold level z that is
lower than x∗

j′f .
As preemptive equilibrium is precluded, so simultaneous equilibrium prevails. That is, none of

the two firms chooses to act as the leader, consistent with the fact that both firms have no dominant
first order advantage. Now, the two firms would choose to enter simultaneously at the threshold
min{x∗

is, x
∗
es}, which is always higher than max{x∗

if , x
∗
ef} [see Eq.(3.15)].
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4.2 Impact of cost asymmetry on the strategic games

First, it may be instructive to recall some of the earlier results obtained by Pawlina and Kort (2006)
and Kong and Kwok (2007) on the impact of investment cost asymmetry on the optimal strategies in
duopolistic investment games. Under cost asymmetry and symmetry in all other model parameters,
Pawlina and Kort (2006) comment that the lower-cost firm has higher first mover advantage so it
tends to act either as the dominant leader or preemptive leader. Kong and Kwok (2007) consider
duopolistic investment games under a more general setting, where positive externalities correspond
to returns in the duopoly state exceed that in the monopoly state, and vice versa for negative
externalities. It is seen that negative externalities induce keen competition between the two rival
firms. Similar to the categorization shown in Figure 2, simultaneous equilibrium is resulted under
positive externalities when there is no dominant first mover advantage of both firms. On the other
hand, under negative externalities, preemptive equilibrium is resulted when the cost-profit ratio is
low (keen competition) while sequential leader-follower equilibrium is attained when the cost-profit
ratio becomes sufficiently high (competition is less keen).

Referring to our R&D model, positive and negative externalities of Firm j, j = i, e, are seen
to correspond respectively to positivity and negativity in the sign of dj, j = i, e, [see eqs.(3.8b)
and (3.10b)]. We would like to examine the impact of cost asymmetry on the strategic games under
positive and negative externalities. To simplify our analysis, we set all other model parameters except
the sunk costs to be the same for both firms. That is, we set

π+
i = πe = π, π−

i = 0, hi = he = h, and ĥi = ĥe = ĥ.

Under the assumption of the above model parameter values, di and de are seen to be equal, and we
write

d = di = de.

Now, since hi = he, we have equality of βi and βe. For convenience, we write β̂ = βi = βe.
The following two propositions state the pattern of strategic equilibria under positive and negative

externalities, respectively, in the Ki-Ke parameter space of the sunk costs of R&D investment.

Proposition 1 Under positive externalities, where d > 0, there exists kl ∈ (0, Ke) and ku ∈ (Ke,∞)
such that simultaneous equilibrium is resulted when Ki ∈ [kl, ku]. Otherwise, when Ki < kl (or
Ki > ku), Firm i (or Firm e) is the leader in the resulting sequential leader-follower equilibrium.

The proof of Proposition 1 is relegated to Appendix A. Recall that the input spillover has to
be sufficiently strong in order to induce positive externalities [see Eqs. (3.12 a,b)]. The results in
Proposition 1 reveal that under positive externalities, simultaneous equilibrium is resulted when cost
asymmetry between the two firms is small. Otherwise, sequential leader-follower equilibrium prevails
when the cost asymmetry is significant. The firm with the lower cost then serves as the leader.
Interestingly, the sequential leader-follower equilibrium represents the more desirable scenario of
tactic collusion (with no fear of preemption).

The next proposition characterizes the strategic equilbria under negative externalities, where
d < 0. The pattern of strategic equilibria depends on whether d∗ < d < 0 or d < d∗ < 0, where the
critical threshold d∗ is given by

d∗ = −
hπ(β̂ − β0)

(r − µ)(r − µ + h)(β̂2 − β0)
< 0. (4.1)
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Proposition 2 Under negative externalities, where d < 0, the pattern of strategic equilibria of the
two firms can be characterized as follows:

(a) d∗ < d < 0

There exists k
(1)
l ∈ (0, Ke) and k

(1)
u ∈ (Ke,∞) such that simultaneous equilibrium is resulted

when Ki ∈ [k
(1)
l , k

(1)
u ]. Otherwise, when Ki < k

(l)
l (or Ki > k

(1)
u ), Firm i (or Firm e) is either

the preemptive or sequential leader in the resulting leader-follower equilibrium.

(b) d < d∗ < 0

There exists k
(2)
l ∈ (0, Ke) and k

(2)
u ∈ (Ke,∞) such that preemptive equilibrium is resulted

when Ki ∈ [k
(2)
l , k

(2)
u ], where the firm with the lower sunk cost serves as the preemptive leader.

Otherwise, when Ki < k
(2)
l (or Ki > k

(2)
u ), Firm i (or Firm e) is the leader in the resulting

sequential leader-follower equilibrium.

The proof of Proposition 2 is relegated to Appendix B. The standard leader-follower game is
resulted under negative externalities when d is sufficiently negative in value. Preemptive equilibrium
emerges when cost asymmetry is not significant, where the firm with the lower sunk cost serves
as the preemptive leader. Otherwise, the sequential leader-follower equilibrium is resulted when
cost asymmetry becomes more significant. On the other hand, when d is negative but larger than
some threshold value d∗, the pattern of strategic equilibria is somewhat similar to that under positive
externalities where simultaneous equilibrium is resulted when cost asymmetry is not significant. Oth-
erwise, either preemptive or sequential leader-follower equilibrium may result when cost asymmetry
is significant.

4.3 Hazard rates and strategic equilibria

It would be instructive to examine the impact of the initial hazard rates of the R&D investment of
the two firms on the pattern of strategic equilibria. A lower value of the initial hazard rate hj of Firm
j indicates a lower chance of innovative success before the entry of the rival firm, given that Firm j

enters as the leader in the R&D race. In other words, the scenario represents a weaker first mover
advantage of Firm j. Alternatively, we observe that dj, j = i, e, [see Eqs. (3.8b) and (3.10b)] are
both decreasing function with respect to hj. This is because the second mover advantage decreases
as hj increases in value. In other words, Firm j may enjoy positive externalities with dj > 0 at a
lower value of hj but subject to negative externalities with dj < 0 at some sufficiently high value of
hj.

Propositions 1 and 2 show that when cost asymmetry is small, the two firms choose optimally
to invest simultaneously when dj > d∗, where d∗ < 0; otherwise, they adopt the leader-follower
equilibrium. We then expect that the two firms under symmetry conditions (same set of model
parameters and same initial status) tend to invest simultaneously when the common initial hazard
rate h is low while they tend to preempt each other when h is sufficiently high. Taking the assumption
that π+

i = πe = π, Ki = Ke = K, hi = he = h, ĥi = ĥe = ĥ and π−
i = 0, we summarize the impact

of hazard rates on the pattern of strategic equilibria of the two symmetric firms in the following
proposition.

Proposition 3 Assuming that the two rival firms are symmetric, the common hazard rates h and ĥ

exhibit the following properties on the pattern of strategic equilibrium.
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(a) Suppose h < r − µ, preemptive equilibrium is resulted if ĥ < ĥ∗ while simultaneous equilibrium
is resulted if ĥ ≥ ĥ∗, where

ĥ∗ =
hβ̂(β̂ − 1)(r − µ)

(r − µ)(β̂2 − β0) − h(β̂2 − 2β̂ + β0)
.

(b) There exists some threshold h∗, where h∗ > r − µ, such that the preemptive leader-follower
equilibrium is always resulted when h > h∗.

The proof of Proposition 3 is presented in Appendix C. Given that h < r − µ, Proposition 3(a)
states precisely the condition on the common updated hazard rate ĥ such that simultaneous equilib-
rium is resulted (ĥ has to be above some threshold value ĥ∗). This corresponds to the scenario where
the first mover advantage is low (small value of h) and the second mover advantage is substantial as
dictated by the condition: ĥ > ĥ∗. The result is seen to be similar to that of Proposition 1 where
simultaneous equilibrium is resulted when the two firms are under positive externalities and low cost
asymmetry. On the other hand, when the common initial hazard rate h is above certain threshold
value, Proposition 3(b) states that simultaneous equilibrium is always ruled out due to significant
first mover advantage (even in the presence of strong positive spillovers). This result echoes that of
part (b) in Proposition 2 when one considers the scenario where the two firms face sufficiently deep
negative externalities.

5 Numerical examples

In this section, we would like to illustrate through various numerical examples that demonstrate how
the hazard rate and spillover effects may impact on the strategic equilibria in the R&D races of the
two firms. First, we show the plot of the value functions of the two firms under various types of
strategic equilibriums. We then illustrate the dependence of the entry threshold values of the two
firms on their hazard rates. We also characterize the types of strategic equilibria in the parameter
space of various pairs of model parameters.

5.1 Plots of value functions

In Figures 3(a-d), we show various plots of the value functions of the two firms under different
strategic equilibria. The common set of parameter values in the numerical calculations for plotting
the value functions are chosen to be: r = 0.05, µ = 0.01, σ = 0.3, π+

i = 0.8, π−
i = 0, Ki = 8. Other

model parameters, like hi, he, ĥi, ĥe, πe and Ke, assume different set of values in each figure.
In Figure 3(a), we demonstrate the behavior of various value functions under sequential equilib-

rium with Firm e as the leader. The other parameter values used in generating the plots in the figure
are taken to be: hi = 0.1, he = 0.2, ĥi = 1, ĥe = 0.25, πe = 0.9 and Ke = 5. Note that Firm i enjoys a
strong positive spillover since the hazard rate jumps from hi = 0.1 (in the monopoly state) to ĥi = 1
(in the duopoly state). The parameter values give di > 0, thus Firm i has no preemption incentive.
This agrees with Li(x) < Fi(x) for x < x∗

ef as shown in the figure. Indeed, our numerical calculations
give x∗

il = 1.85, x∗
el = 0.46, x∗

if = 0.81, x∗
ef = 2.06, which show x∗

el < x∗
if . Since preemption incentive

does not exist for Firm i, it is never optimal for Firm i to preempt Firm e at any threshold below x∗
el.

As a result, Firm e enters into the R&D race optimally at x∗
el as leader while Firm i enters optimally

at x∗
if as follower.
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In Figure 3(b), we plot the value functions of the two firms under preemptive equilibrium with
Firm e preempting its rival at xip. The relevant parameter values used in generating the plots are

taken to be: hi = 0.3, he = 0.4, ĥi = 0.5, ĥe = 0.5, πe = 0.9 and Ke = 7. The threshold values of
the two firms are found to be: x∗

il = 0.72, x∗
el = 0.68, x∗

if = 1.16, x∗
ef = 0.94, xep = 0.36, xip = 0.53,

xip = 0.90. Both firms hold dominant first mover advantage since x∗
il < x∗

ef and x∗
el < x∗

if , and they
also share negative externalities as the parameter values give di < 0 and de < 0. The leader function
Li(x) and follower function Fi(x) intersect twice at x = xip and x = xip. On the other hand, the
leader function Le(x) and follower function Fe(x) intersect once at x = xep. Both firms face keen
competition as xip < x∗

el < xip. It is necessary to consider the relative magnitude of xep and xip in
order to determine the preemptive leader. Since xep < xip, according to the analysis in Sec. 4.1,
we conclude that preemptive equilibrium is resulted and Firm e chooses to preempt its rival at the
rival’s preemption threshold xip.

To generate the plots in Figure 3(c), we modify the hazard rate parameter ĥe from ĥe = 0.5 used
in Figure 2(b) to the new value ĥe = 0.9 while keeping all other parameter values the same. From
the leader and follower value functions of the two firms shown in Figure 2(c), the corresponding
threshold values of the two firms are found to be: x∗

il = 0.59, x∗
el = 0.82, x∗

if = 1.60, x∗
ef = 0.72,

xep = 0.36. Both firms remain to hold dominant first mover advantage since x∗
il < x∗

ef and x∗
el < x∗

if ,

and they both face negative externalities. With an increase in ĥe, the preemption incentive of Firm
i vanishes as Li(x) and Fi(x) do not intersect. This is because Li(x) decreases in value while Fi(x)
increases in value when ĥe increases. Note that xep exists and so preemption incentive exists only in
Firm e. Since x∗

il < x∗
el and x∗

ep < x∗
il, according to the analysis in Sec. 4.1, we conclude that Firm e

is the preemptive leader and chooses to epsilon-preempt Firm i at x∗
il.

Lastly, we choose larger values of ĥi and ĥe in order to generate strong positive spillovers among
the two firms. As revealed by the plots in Figure 3(d), the new set of relevant parameter values are
taken to be: hi = he = 0.03, ĥi = ĥe = 1, πe = 0.8, Ke = 7. The leader and follower threshold values
of the two firms are found to be: x∗

il = 2.41, x∗
el = 2.11, x∗

if = 1.87, x∗
ef = 1.63. Note that both

firms face positive externalities as di > 0 and de > 0, and there exist no dominant first advantage in
both firms as x∗

il ≥ x∗
ef and x∗

el ≥ x∗
if . According to the analysis in Sec. 4.1, under the scenario of

absence of first mover advantage in both firms, simultaneous equilibrium is resulted at which both
firms enter at the some threshold that equals min{x∗

is, x
∗
es}. The plots of the value functions of joint

optimal entry in Figure 3(d) indicate that x∗
is = 2.41 and x∗

es = 2.11, so the common simultaneous
threshold is given by min{2.41, 2.11} = 2.11.

5.2 Impact of spillovers on optimal entry threshold values

In Figures 4(a) and 4(b), we show plots of the optimal entry threshold values of the two firms
with respect to ĥi and ĥe, respectively. These plots help understand the impact of spillovers on the
strategic equilibria, as depicted by the optimal entry threshold values of the two firms either as the
leader or follower. To generate these plots of the entry threshold values, we adopt the common set
of model parameters in the calculations for generating the plots in Figures 3(a-d), except for some
changes for the parameter values of the hazard rates and sunk costs of the two firms.

In Figure 4(a), the entry threshold values of the incumbent firm (Firm i) and entrant firm (Firm
e) are plotted against ĥi with common hazard rate in the monopoly state (that is, hi = he). The
hazard rates and sunk costs are chosen to be: hi = 0.2, he = 0.2, ĥe = 0.2, Ki = 5, Ke = 5,
and π+

i = πe = 0.8. For this given set of model parameter values, preemptive equilibrium is always

19



resulted, though the nature of the preemptive equilibrium differs under different levels of ĥi. When ĥi

is sufficiently low, where ĥi ≤ ĥ∗
i (ĥ∗

i is found to be 0.103 based on this given set of parameters), Firm
e chooses to preempt Firm i at Firm i’s leader threshold. In other words, Firm i enters optimally as
the follower at its optimal leader threshold x∗

if while Firm e enters as the preemptive leader at its

Firm i’s optimal leader threshold x∗
il [as illustrated in Figure 4(a) by x

(l)
e = x∗

el and x
(f)
i = x∗

if when

ĥi ≤ ĥ∗
i ].

It is seen that an increase in ĥi would cause x∗
il to assume a higher value since Firm i’s second mover

advantage is strengthened with a higher hazard rate under duopoly. When ĥi increases beyond ĥ∗
i ,

some new form of preemptive equilibrium is resulted in the leader-follower game. At an intermediate
level of ĥi, where ĥ∗

i < ĥi < ĥ∗∗
i (our calculations based on the given set of model parameters give

ĥ∗
i = 0.103 and ĥ∗∗

i = 0.355), the competition is relatively keen, so the firm with a higher hazard rate
under duopoly (Firm j) preempts its rival at the rival’s preemption threshold xj′p, j 6= j′. When ĥi

increases further, the preemptive incentive of Firm e is weakened. Once ĥi > ĥ∗∗
i , Firm i chooses

to preempt at the rival’s leader threshold x∗
el. As illustrated in Figure 4(a), we have x

(l)
i = x∗

el and

x
(f)
e = x∗

ef when ĥi > ĥ∗∗
i .

It is instructive to compare our result with that of Weeds (2002). At ĥi = ĥe = hi = he = 0.2,
we obtain symmetric duopoly similar to the model of Weeds (with zero spillover). There exist two

possible preemptive equilibria: (i) Firm i acts as the preemptive leader at x
(l)
i = xep (same value as

xip due to symmetry) and Firm e acts optimally as the follower at x
(f)
e = x∗

ef . (ii) Firm e acts as the

preemptive leader at x
(l)
e = xip = xep and Firm i acts optimally as the follower at x

(f)
i = x∗

if . This
result is consistent with that of Weeds (2002).

In Figure 4(b), the entry threshold values of the two firms are plotted against ĥi with common
hazard rate in the monopoly state (that is, hi = he). The hazard rates and sunk costs are chosen
to be: hi = 0.05, he = 0.05, ĥi = 0.3, Ki = 5, Ke = 5, and π+

i = 0.8, πe = 0.8. Here, the
hazard rates in the monopoly state are chosen to be small since we would like to demonstrate
the occurrence of simultaneous equilibrium under low hazard rates. When ĥi is lower than some
threshold level ĥ∗

i (ĥ∗
i = 0.23 is obtained based on this set of parameter values), only Firm e has first

mover advantage while Firm i has no preemptive incentive. As a result, Firm e is the leader in the
resulting sequential leader-follower equilibrium. At an intermediate level of ĥi, where ĥ∗

i < ĥi < ĥ∗∗
i

(our calculations give ĥ∗
i = 0.23 and ĥ∗∗

i = 0.42), both firms do not exhibit first mover advantage, so
simultaneous equilibrium is resulted. The simultaneous entry threshold values of both firms are given
by x

(s)
i = x

(s)
e = min(x∗

is, x
∗
es). As ĥi increases beyond ĥ∗∗

i , only Firm i has first mover advantage while
Firm e has no preemptive incentive, so Firm i is the leader in the resulting sequential leader-follower
equilibrium.

5.3 Impact of market uncertainty on optimal entry threshold values

We would like to examine the impact of market uncertainty (as proxied by the volatility parameter
σ in xt) on the optimal entry threshold values of the two competing firms. In Figures 5(a) and 5(b),
we show plots of the entry threshold values of the two firms with varying values of volatility σ. We
adopt the common set of model parameters as in Figures 3(a), except that the volatility parameter
σ is chosen to be either 0.1, 0.2 or 0.3, and Firm i’s hazard rate under duopoly ĥi is now fixed at
0.2. First, we observe that both firms always act at higher entry threshold either as the leader or
follower. At a higher value of σ, real option values of the firms are higher. Therefore, the firms tend
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to choose entry at higher threshold values. On the other hand, higher level of market uncertainty
lowers the preemptive incentive so that the firm with higher hazard rate under duopoly preempts its
rival at rival’s preemptive threshold within a narrower range of ĥi.

5.4 Pattern of strategic equilibria

Lastly, we perform characterization of the strategic equilibria in the parameter space of (i) d and Ki

(where d is the common externality factor), and (ii) h and ĥi (where h is the common hazard rate
under monopoly). The corresponding patterns of strategic equilibria are illustrated in Figures 6(a)
and 6(b), respectively.

In generating the plot in Figure 6(a), the model parameter values are chosen to be hi = he = 0.05,
Ke = 10, π+

i = πe = 0.8. We take ĥi = ĥe, and these two parameters assume values between 0
to 0.3 to generate the range of values for d as shown in the figure. According to Proposition 2,
under the assumption of negative externalities with d < 0, the pattern of strategic equilibria can be
characterized according to d < d∗ or d > d∗, where d∗ is some threshold value. In our calculations,
the critical threshold d∗ is found to be −2.09. When d < d∗, keen competition arises when Ki is
chosen to be close to Ke, where Ke is chosen to be 10. Under this scenario, we obtain preemptive
equilibrium with the lower cost firm as the preemptive leader. When the difference in sunk costs
becomes wider, sequential equilibrium is resulted. On the other hand, when d > d∗, both firms do not
have first mover advantage when the difference in the sunk costs is small, thus leads to simultaneous
equilibrium. However, the strategic equilibrium pattern changes to sequential equilibrium when the
two sunk costs differ widely. All these observations, as illustrated in Figure 6(a), agree with the
results stated in Proposition 2.

Figure 6(b) shows the pattern of strategic equilibria in the parameter space of h and ĥi. The
model parameter values are chosen to be the same as those in generating Figure 4(a), expect that
Ki = Ke = 5 and ĥe = 0.3. Here, we set the sunk costs of the two firms to be the same. When the
common hazard rate under monopoly h is less than some threshold value h∗ (in our calculations, h∗

is found to be 0.056), it becomes much likely that both firms do not have first mover advantage. In
particular, this occurs when the two hazard rates under duopoly of the two firms do not differ widely.
Under this scenario, simultaneous equilibrium is resulted. Otherwise, when the difference in ĥe and
ĥi becomes more significant, sequential equilibrium is resulted, where the firm with the higher hazard
rate under duopoly becomes the preemptive leader. On the other hand, when h > h∗, preemptive
equilibrium is resulted when ĥe and ĥi do not differ widely, and the firm with the higher hazard rate
under duopoly becomes the preemptive leader. Otherwise, sequential equilibrium is resulted when
the difference in ĥe and ĥi becomes sufficiently large.

6 Conclusions

Using the real options game approach, we perform analysis of strategic equilibria of optimal entries
into an asymmetric duopoly R&D race in the development of a new product with both market and
technological uncertainty. The types of Markov perfect equilibria include sequential leader-follower
equilibrium, preemptive equilibrium, and simultaneous equilibrium. Which type of equilibrium pre-
vails would depend on the relative ordering of the various trigger thresholds with reference to the
appropriate actions taken by the rival firms. The final outcome of equilibrium is related to the inter-
play between taking first mover advantage as the leader or adopting second mover advantage as the
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follower. The positivity of the relevant externality factors, like input spillovers, plays an important
role in determining the optimal actions taken by the rival firms.

Under preemptive equilibrium, real option values are reduced by fear of preemption since the
preemptive leader chooses to enter at the threshold that is below its optimal entry threshold that is
without preemption threat. The two competing forces are characterized by the loss of real option
value due to preemption and delay entry as a follower to take advantage of the positive input spillover.
When positive input spillover is present, it is interesting to observe that a higher sunk cost of R&D
investment or a lower hazard rate of arrival of innovation of the incumbent firm value may increase its
firm value due to the change from preemptive equilibrium to simultaneous equilibrium. In this sense,
delay of entry into R&D under simultaneous equilibrium is more desirable since keen competition
between the competing firms is avoided.

The analysis of the real options game R&D race model reveals several interesting phenomena.
When the input spillover stays positive, preemptive equilibrium is always ruled out due to the
presence of dominant second mover advantage. Also, we show that the two firms choose optimally
to enter simultaneously if the sunk cost asymmetry between them is relatively small while sequential
equilibrium is resulted if otherwise. Dominant second mover advantage is seen to prevail when
the initial hazard rate is low while the input spillover is sufficiently high, resulting in simultaneous
equilibrium. However, the first mover advantage may become significant when the initial hazard rate
becomes sufficiently high. In this case, simultaneous equilibrium is ruled out even under very high
positive input spillover. Suppose the incumbent’s hazard rate is held fixed while the entrant’s hazard
rate increases gradually, it may occur that preemption action taken optimally by the incumbent is
changed to sequential follower entry since a stronger incumbent’s second mover advantage is resulted.

We have observed how the equilibrium strategies of R&D investment may change from one type
to another type depending on the level of spillovers. Also, we have shown how the value functions
may be enhanced through the avoidance of keen competition (for example, preemptive entry is not
adopted as an optimal entry decision). Our model may provide insight on finding the optimal level of
spillovers that enhance social welfare (like maximizing the sum of the value functions of the competing
firms) while the drive for innovation is not significantly undermined due to delay in launching the
R&D investment.

Our real options game model can be extended in several directions. Normally, R&D investment
may occur in several stages with results on partial success of innovation released at each stage.
The competing firms may modify their strategies based on the relevant updated information on the
potential of successful innovation. Modeling of multistage R&D races together with information
updating would pose interesting challenges. Also, we may consider a mixed duopoly of R&D race
where one firm is a welfare maximizing public sector firm while the other firm is a profit maximizing
private firm. If we allow costless imitation of the research results from the public sector firm, then
this may result in too little research by the private firm. We may consider various forms of input and
output spillovers, and their appropriate level such that it is socially optimal. That is, there is no over-
investment in R&D under competition on one hand and no under-investment in the economy on the
other hand. The natural question: does the occurrence of the sequential leader-follower equilibrium
represent an ideal outcome of the R&D race, where natural market forces are in full action without
the social planner’s intervention? Next comes the challenge: how to achieve that?
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Appendix A - Proof of Proposition 1

All the model parameters have been set the same for both firms except the sunk costs. We concentrate
our analysis under Ki ≤ Ke, while the analysis under Ki > Ke can be performed in a similar manner.

It is instructive to investigate whether there exists dominant first mover advantage, that is,
x∗

il < x∗
ef and/or x∗

el < x∗
if . First, we argue that Firm e has no dominant first mover advantage by

establishing x∗
el ≥ x∗

if when Ki ≤ Ke. This can be shown easily by observing that the following
equation [see also eq. (3.9b)]:

d(β̂ − β0)

[x∗
if(Ki)]β̂−1

zβ̂ −
(β0 − 1)hπ

(r − µ)(r − µ + h)
z + β0Ke = 0

has no root in [0, x∗
if(Ki)] when Ki ≤ Ke.

Next, we show that Firm i holds dominant first mover advantage when Ki is sufficiently low.
Recall that x∗

il satisfies the following equation [see also eq. (3.11b)]:

g(z; Ki) =
d(β̂ − β0)

(x∗
ef )

β̂−1
zβ̂ −

(β0 − 1)hπ

(r − µ)(r − µ + h)
z + β0Ki = 0.

It is easily seen that g(z; Ki) possesses the following properties:

(i) g(z; Ki) is increasing with respect to Ki;

(ii) when Ki = Ke, g(z) > 0 for all z ∈ [0, x∗
ef );

(iii) when Ki = 0, g(z) ≤ 0 for some z ∈ [0, x∗
ef ).

One can then deduce that there exists kl ∈ (0, Ke) such that

(i) when 0 < Ki ≤ kl, g(z; Ki) = 0 has at least one root in [0, x∗
ef );

(ii) when kl < Ki ≤ Ke, g(z; Ki) > 0 for all z ∈ [0, x∗
ef).

We then have (a) x∗
il < x∗

ef when 0 < Ki ≤ kl; and (b) x∗
il ≥ x∗

ef when kl < Ki ≤ Ke.
When Ki > Ke, by performing a similar analysis, we deduce that there exists ku ∈ (Ke,∞) such

that (a) x∗
el < x∗

if when Ke < ku < Ki, and (b) x∗
el > x∗

if when Ke < Ki < ku.
From the above results, the strategic equilibrium can be deduced as follows:

(i) 0 < Ki ≤ kl, where kl ∈ (0, Ke)
Firm i exhibits dominant first mover advantage as x∗

il < x∗
ef . Preemptive equilibrium is ruled

out under positivity of d, so sequential equilibrium is resulted with Firm i acting as the domi-
nant leader (see Sec. 4.1).

(ii) kl < Ki < ku, where kl ∈ (0, Ke) and ku ∈ (Ke,∞)
Both firms do not hold dominant first mover advantage, so simultaneous equilibrium is resulted
(see Sec. 4.2). Both firms choose to enter into R&D investment at min{x∗

is, x
∗
es}.

(iii) Ki > ku, where ku ∈ (Ke,∞)
Sequential equilibrium is resulted with Firm e acting as the dominant leader.
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Appendix B - Proof of Proposition 2

It is necessary to consider the two separate cases: (i) d∗ < d < 0 and (ii) d < d∗ < 0. The proof for
the results in case (i) follows a similar analysis as depicted in Appendix A. However, it is necessary
to consider the possibility of ε-preemption in the resulting leader-follower equilibrium due to the
existence of the preemption trigger threshold. The detailed discussion on the occurrence of either
the preemptive equilibrium or sequential equilibrium with various selected ranges of various choices
of the cost parameters can be found in Leung (2011).

For case (ii), we start the proof by showing that dominant first mover advantage always exists in
at least one firm so the R&D game always results in leader-follower equilibrium. We then consider
the two separate cases, either only one firm has dominant first mover advantage or both firms hold
dominant first mover advantage. In the first case, the analysis that determines whether preemption
equilibrium or sequential equilibrium occurs is similar to part (a). In the second case, it is necessary
to determine which firm emerges as the eventual leader by analyzing the relative positions of the
preemption thresholds and leader entry thresholds of both firms with respect to the cost parameters.
Detailed discussion of the relevant procedures can be found in Leung (2011).

Appendix C - Proof of Proposition 3

When the two firms are symmetric, we deduce from Propositions 1 and 2 that (i) simultaneous
equilibrium is resulted if d ≥ d∗, and (ii) preemptive equilibrium is resulted if d < d∗. We would like
to examine the conditions on h and ĥ that lead to the above two cases.

Here, we write the functional dependence of d on ĥ as d(ĥ). First, we establish the following
results [see Leung (2011)]:

(a) If h
r−µ+h

β̂2−β̂

β̂2−β0

≥ 1
2
, then d(ĥ) < d∗ for ĥ ≥ 0.

(b) If h
r−µ+h

β̂2−β̂

β̂2−β0

< 1
2
, then there exists ĥ∗ (as defined in Proposition 3) such that d(ĥ) ≥ d∗ if and

only if ĥ ≥ ĥ∗.

Next, for h < r − µ, it is easily seen that h
r−µ+h

β̂2−β̂

β̂2−β0

< 1
2
, so by the result in part (b) above, we

obtain the result in Proposition 3(a). Lastly, by observing

lim
h→∞

h

r − µ + h

β̂2 − β̂

β̂2 − β0

= 1 and
h

r − µ + h

β̂2 − β̂

β̂2 − β0

|h=0 = 0,

we deduce that there exists h∗, where h∗ > r − µ, such that h
r−µ+h

β̂2−β̂

β̂2−β0

≥ 1
2
. By the result in part

(a) above, we obtain Proposition 3(b).
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Figure 1: Transition rates diagrams for the stochastic revenue flow rates and hazard rates of success
of innovation of the incumbent firm and entrant firm.
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Figure 2: A schematic diagram that illustrates the categorization of various forms of equilibrium.
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Figure 3a: Plot of the leader and follower value functions under sequential equilibrium with Firm e

as the leader. Though both firms hold dominant first mover advantage as revealed by x∗
il < x∗

ef and
x∗

el < x∗
if , Firm i has no preemption incentive as demonstrated by Li(x) < Fi(x) for x < x∗

ef . As a
result, Firm e enters optimally at x∗

el as leader while Firm i enters optimally at x∗
if as follower.

Figure 3b: Plot of the leader and follower value functions under preemptive equilibrium with Firm
e as the preemptive leader. Both firms have preemption incentive since preemption thresholds exist
for both firms. As xep < xip, so Firm e preempts its rival at the rival’s preemption threshold xip.
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Figure 3c: Plot of the leader and follower value functions under preemptive equilibrium with Firm
e preempting the rival firm at the rival’s leader threshold x∗

il. The functions Li(x) and Fi(x) do
not intersect while the functions Le(x) and Fe(x) intersects only once at xep. The competition for
leader’s entry is less keen since preemption incentive exists only in Firm e.

Figure 3d: Plot of the leader and follower value functions of each of two firms, and the value functions
of joint optimal entry of the two firms under simultaneous equilibrium.
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i ĥ∗∗

i

Preemptive
Equilibrium

Figure 4a: Plot of the optimal entry threshold values of the two firms with respect to ĥi with
common hazard rate in the monopoly state, hi = he. The thick curves (dotted curves) show the
entry threshold values of the incumbent (entrant). At a lower value of ĥi, the entrant enters as the
preemptive leader at either Firm i’s optimal leader threshold x∗

il or Firm i’s preemption threshold

xip. As ĥi increases, the incumbent becomes the preemptive leader. At ĥi = ĥe = hi = he = 0.2,
we recover the symmetric duopoly model of Weeds; and preemptive equilibrium prevails in this case.
Due to symmetry, either firm may become the preemptive leader entering at the rival’s preemption
threshold; the other firm serving as the follower would enter at its own optimal follower threshold.
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Figure 4b: Plot of the optimal entry threshold values of the two firms with respect to ĥi with common
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values of the incumbent (entrant). At a lower value of ĥi, Firm e is the leader under the resulting
sequential leader-follower equilibrium since it has stronger first mover advantage. At an intermediate
value of ĥi, both firms do not exhibit first mover advantage, so simultaneous equilibrium is resulted.
At a higher value of ĥi, Firm i is the leader under the resulting sequential leader-follower equilibrium
since only Firm i has first mover advantage.
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Figure 5a: Plot of the optimal entry threshold of Firm i against ĥi with varying values of volatility
σ. When preemptive equilibrium prevails, Firm i enters at a higher threshold (either as the leader
or follower) at a higher value of volatility.
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Figure 5b: Plot of the optimal entry threshold of Firm e against ĥi with varying values of volatility
σ. When preemptive equilibrium prevails, Firm e enters at a higher threshold (either as the leader
or follower) at a higher value of volatility.
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Figure 6a: Characterization of the pattern of strategic equilibria in the d-Ki plane. When d < d∗,
where d∗ = −2.09, we obtain preemptive equilibrium (with the lower cost firm as the leader) when the
sunk costs are close to each other (representing keen competition). Otherwise, sequential equilibrium
is resulted when the sunk costs become wider apart. On the other hand, when d > d∗, simultaneous
(sequential) equilibrium is resulted when the sunk costs differ narrowly (widely).
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Figure 6b: Characterization of the pattern of strategic equilibria in the h-ĥi plane. When h < h∗,
where h∗ = 0.056, we obtain simultaneous equilibrium when ĥi is close to ĥe, where ĥe is set to
0.3 (both firms have no first mover advantage). Otherwise, sequential equilibrium is resulted and
the firm with the higher hazard rate under duopoly becomes the leader. On the other hand, when
h > h∗, preemptive equilibrium (sequential) equilibrium is resulted when the two hazard rates under
duopoly differ slightly (significantly).
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