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ABSTRACT

The purpose of this paper is to examine empirically the real options to shutdown, startup,

and abandon existing production assets using detailed information for 1,121 individual power

plants for the period 2001–2009, a total of 8,189 plant-yearobservations. We find strong evi-

dence of real options effects. We find that uncertainty aboutthe outcome of ongoing deregula-

tion in retail electricity markets (i) decreases the probability of shutting down operating plants,

and, (ii) decreases the probability of starting up plants which were previously shutdown.
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II, Gunnar Eskeland, Rüdiger Kiesel, Raman Kumar, Ian Lange, Kristin Linnerud, Steve Marshall, Johannes Mauritzen, Lucija
Muehlenbachs, Peter Molnar, Julio Riutort, Afzal Siddiqui, and Jim Smith. We also thank participants at the 2011 ElCarbon-
Risk seminar at the Norwegian University of Science and Technology, the 2012 Midwest Finance Association meetings in New
Orleans, the EMEE 2012 Workshop in Berlin, the iFORM SIG 2012Conference in New York City, and seminar participants at
Tennessee Technological University, the University of Duisburg-Essen, and Virginia Tech for useful comments and suggestions.



I. Introduction

Do managers take account of real options effects when makingcapital budgeting decisions? Survey results

reported in the literature suggest that, for the most part, the answer is no!

Graham and Harvey (2001) report that only 26.6% of survey respondents “always or almost always”

incorporate real options into project evaluation. Triantis (2005) cites surveys of CFOs and senior executives

which find that 10-15% and 9%, respectively, use real optionstechniques. According to McDonald (2006),

less than 25% of firms use the real options approach to capitalbudgeting. Block (2007) surveysFortune

1000 companies and finds that 14.3% were using real options techiques. Baker, Dutta, and Saadi (2011)

survey Canadian firms and find that only 16.8% report that theyuse real options for capital budgeting,

ranking it last among nine capital budgeting techniques. They conclude by saying (p.27), “More than

30 years after the term was coined, real options have yet to beadopted by most companies as a tool for

strategic decision making.”

Even if managers do not make explicit use of real options techniques, McDonald (2000) suggests

they might utilize “rules of thumb” which account for uncertainty and allow for optimal or near optimal

decisions. Kellogg (2010) finds that oil well drilling firms do respond to changes in price volatility despite

the fact that (p.32) “ ... it seems unlikely that they are formally solving Bellman equations.” He suggests

that these firms have decision heuristics which approximatereal options decision making processes.

The purpose of this paper is to test for real options effects in the decisions to shutdown, startup, and

abandon existing production assets, which we refer to collectively as status changes. We conduct our tests

using detailed information for 1,121 individual power plants. To the best of our knowledge, the data are

unique in scope and level of detail. We provide strong evidence that decision makers take account of cash

flow uncertainty and regulatory uncertainty when making shutdown, startup, and abandonment decisions.

The difference between the market values of electricity andfuel is referred to as thespark spread. A

power plant comprises a series of call options written on thespark spread. An increase in spark spread
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volatility therefore increases the option value of the plant. We show that an increase in spark spread

volatility (i) decreases the probability of shutting down an operating plant, (ii) increases the probability

of starting up a plant which was previously shutdown, and, (iii) decreases the probability of abandoning a

plant which was previously shutdown.

We add to the recent stream of literature which focuses on theeffects of regulatory uncertainty on the

managerial decisions.3 We find that during times of regulatory uncertainty plants which are operating are

less likely to be shutdown and plants which were previously shutdown are less likely to startup. Under

traditional regulation, retail customers are captive. Retail deregulation allows customers to choose their

electricity supplier. The advent of retail deregulation has the potential to significantly change the demand

for electricity faced by any individual supplier. Uncertainty about the outcome of deregulation means that

owners are unsure about the future profitability of their plants. Plant owners therefore rationally delay the

decision to shutdown an operating plant, and the decision tostartup a plant which was previously shutdown,

until the outcome of the deregulation process is more certain.

We find no evidence that regulatory uncertainty affects abandonment decisions. Abandoning a plant

which was previously shutdown has little effect on the cash flows of the firm because the plant is “out-of-

the-game” already.

The remainder of the article is structured as follows. Section II provides a review of existing litera-

ture and serves to motivate our empirical exercise. SectionIII details the data. In Section IV we define

shutdown, startup, and abandonment in our sample. In Sections V and VI we present the empirical results.

Section VII concludes.
3For example Julio and Yook (2012) studies the effects of political uncertainty on corporate investment. Billingsley and Ullrich

(2012) finds that regulatory uncertainty in electricity markets reduces capital investment.
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II. Literature Review

The theory of real options predicts that, in the face of irreversible switching costs and uncertainty in cash

flows, major changes in assets are subject to hysteresis, andcan be structured as options. For example, the

opportunity to invest in, shutdown (or mothball), restart,or abandon a production asset can be cast as call

and put options on the present value of the cash flows of the asset.

Robichek and Horne (1967) recognize that the “possibility of future abandonment” is an important part

of the value of any potential project and that it must be accounted for in the capital budgeting process.4

McDonald and Siegel (1985) develop a methodology for valuing risky investments when the firm has the

option to shutdown the project after it has been constructed. They introduce uncertainty in output prices

and input costs. Brennan and Schwartz (1985) specialize a real options model for the case of a commodity

mine and study optimal policies for shutting down an operating mine.

Empirical studies on real options include Quigg (1993), whouses data on land transactions to show

that a real options model has some explanatory power for market prices, over and above net present value.

Berger, Ofek, and Swary (1996) examine empirically the abandonment option of the firm as a whole and

find that the market value of the firm is increasing in firm exit value. Bulan, Mayer, and Somerville (2009)

investigate condominium development and find that increased volatility reduces probability of investment,

and that a real options model explains the data better than a model of risk aversion. Kellogg (2010) finds

that Texas oil companies reduce their drilling activity when volatility rises, and that the magnitude of this

change is consistent with real options theory.

Moel and Tufano (2002) evaluate empirically the predictions of the Brennan and Schwartz (1985)

model by examining the shutdown and startup decisions for 285 gold mine properties for the 1988-1997

time period. They find that a real options model describes well the empirical data. Our work differs from

that of Moel and Tufano (2002) in important ways. First, we focus directly on status changes. Second, we

4In a comment to the original Robichek and Horne (1967) article Dyl and Long (1969) provide a modification which Robichek
and Horne (1969) subsequently accept as correct.
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include a measure of regulatory uncertainty. Third, we alsoexamine the option to abandon a plant. Finally,

our dataset is more detailed and has approximately four times as many observations as the data used by

Moel and Tufano (2002).

III. Data

In this section we describe the sample data in detail. The primary data sources are the Energy Information

Administration, NYMEX, the U.S. Environmental ProtectionAgency, and wholesale electricity market

system operators. Interest rate data come from the U.S. Federal Reserve Bank. Table I presents sum-

mary statistics for the plant-specific variables in our sample, while Table II presents summary statistics for

macroeconomic, real options, and firm-specific variables.

The main data source for this paper is Form 860 collected and disseminated by the Energy Information

Administration (hereafter EIA), the statistical arm of theU.S. Department of Energy. Form 860 contains

detailed data for nearly every power plant in the United States, both existing and planned. We consider

plants from three major wholesale electricity markets - Pennsylvania-New Jersey-Maryland (PJM), the

New England Independent System Operator (ISO-NE), and the New York Independent System Operator

(NYISO) - for the 2001-2009 time period.5 The choice of areas and sample period is driven by (i) the

availability of electricity price data and (ii) significantchanges in Form 860 beginning in 2001. We focus

on “peaking” plants as these should be more subject to the factors expected to influence shutdown, startup,

and abandonment decisions.6 The final data set contains 8,189 plant-year observations on1,121 individual

plants.

5Specifically, we include plants located in Connecticut, Delaware, Illinois, Indiana, Kentucky, Maine, Maryland, Mas-
sachusetts, Michigan, New Hampshire, New Jersey, New York,North Carolina, Ohio, Pennsylvania, Rhode Island, Tennessee,
Vermont, Virginia, Washington D.C., and West Virginia.

6We retain only simple cycle combustion turbines (CT). The fuel type is either low sulfur fuel oil (DFO), i.e., EIA fuel types
DFO, FO1, FO2, or FO4, or natural gas (NG). Baseload technologies, such a coal-fired and nuclear plants, operate more-or-less
continuously for the duration of their useful lives. Also, fuel prices for baseload technologies are very low and stable.
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A. Plant Efficiency

The efficiency of a power plant is measured by itsheat rate. The heat rate of planti, HRi, is the amount

of fuel, measured in millions of British thermal units (MMBtu), required to generate one unit of electricity,

measured in megawatt hours (MWh). A lower number indicates greater efficiency. We use two sources for

heat rate data. Our primary source is the CEMS (Continuous Emissions Monitoring Systems) data from the

U.S. Environmental Protection Agency.7 CEMS data is available for 631 of the 1,121 plants in our sample.

Heat rate data were included in Form 860 for 1990-1995. Thesedata are available for 312 plants for which

no CEMS data is available. Heat rates for the remaining 178 plants are estimated based on the age and size

of the plant. Details are in Appendix A.

For ease of interpretation, we convert heat rates into energy conversion efficiencies. Heat rates have

units of MMBtu
MWh . BothMMBtuandMWhmeasure energy. The two are related by a scale factor. In particular,

there are 3.41275MMBtu in one MWh. We can thus convert a plant’s heat rate into a dimensionless

conversion efficiency as

EFFi =
3.41275

HRi
∗100% (1)

whereEFFi is the conversion efficiency of planti which has heat rateHRi. For example, a plant with a

heat rate of 10MMBtu/MWhhas a conversion efficiency of 34.1%. Summary statistics forthe age (to the

nearest year), size (in megawatts, MW), and efficiency (in %)are presented in Table I.8

7See http://camddataandmaps.epa.gov/gdm/index.cfm?fuseaction=prepackaged.select.
8Ages are calculated based upon the first year a plant appears in the database. The efficiency reported in the tables and used

in the regressions is literallyenergy out
energy in. Kovenock and Phillips (1997) emphasize the importance of controlling for plant efficiency

and industry capacity utilization in investment and abandonment decisions.
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B. Spark Spread Volatility

Consider planti which has heat rateHRi, burns fuel j, and is located in regionk. We calculate the plant-

specific spark spread, or profit margin, expressed in units ofdollars per megawatt hour ($/MWh), for day

n as

SPRDi jk,n = Pelec
k,n −HRi ∗Pf uel

j,n , (2)

wherePelec
k,n is the dayn electricity price ($/MWh) in regionk andPf uel

j,n is the dayn fuel price ($/MMBtu)

for fuel j. Daily spot prices for New York Harbor No. 2 Oil and NYMEX Henry Hub natural gas are

taken from the EIA website. Electricity prices come from thePJM, ISO-NE, and NYISO websites.9 Spark

spread volatility is then the standard deviation of the daily spark spread over yeart.

SPRDSDi jk,t = STDEVT
n=1

(

SPRDi jk,n
)

, (3)

whereT is the number of days in yeart.

C. Supply and Demand Data

Because electricity cannot be stored, available supply (i.e., capacity) must always exceed contemporaneous

demand in order to prevent blackouts.10 We measure supply adequacy by reserve margin. Reserve margin

for regionk and yeart (RMk,t ) is defined to be

RMk,t ≡ (Ck,t −Dk,t)/Dk,t , (4)

9Consistent with our focus on peaking plants, we use electricity prices for the peak period of the day, defined to be the 16 hour
period from hour ending 7 through hour ending 22. We obtain daily peak prices by taking the simple average of the hourly spot
prices during the peak period.

10Triantis and Hodder (1990) develop an analytical model to value flexibility in the production process. In particular, they relax
the assumption of perfect competition and also allow for a capacity constraint.
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whereCk,t is the yeart capacity in regionk andDk,t is the yeart demand in regionk, both measured in

MW. The raw data come NERC’s 2009 Electricity Supply and Demand (ES&D) database. For planning

purposes, target reserve margin values range from 15% to 20%. Table II shows that the mean reserve margin

observed in our sample is 19.8%. The minimum and maximum observed reserve margins are 11.5% and

30.1%, repsectively.

Projected reserve margin serves as our proxy for expected future profitability. Lack of storability

implies that, when demand approaches available supply, electricity prices increase at an increasing rate.11

The lower is the reserve margin, the less excess capacity there is in the system, and the higher are wholesale

electricity prices. Thus projected reserve margin acts as an (inverse) proxy for expected future profitability

of the plant. Low reserve margins imply high future profitability and vise versa.12

C.1. Time Sequence of Data Availability

Form 860 must be filed by mid-February each year. We take the data reported, for example, in the 2005

Form 860 to be effective as of the end of calendar year 2004. Inthe regressions which follow we use only

those data which were available as of the end of 2004 in order to predict a status change (shutdown, startup,

or abandonment) during the next year, i.e., by the end of 2005. Any such change would show up in the

2006 Form 860.

At the time the 2005 Form 860 was filed, the 2004 ES&D database was the most recent available. The

2004 ES&D database contains actual supply and demand data for 2003 and projections for 2004-2013. In

trying to predict whether a plant has a status change in 2005,we use the projected 2005 reserve margin

from the 2004 ES&D database.
11See, for example, Mount, Ning, and Cai (2006) and Ullrich (2012).
12There are other channels through which plants can earn income. Spinning reserve refers to generators which are synchronized

with the system but are not operating at full capacity. Thesegenerators can be ramped up significantly (within 10 minutes) if
needed, e.g., when another generator trips offline. The plants in our study may sometimes be providing spinning reserve (though
we have no way of knowing if and/or when), but they are more likely to be providing Non-Synchronous-Reserve, or NSR. A
generator which is not synchronized to the system (which usually means it is offline) but which can be started quickly and produce
output within 10 minutes is said to provide NSR. Until this year (2012) NSR has not been compensated in PJM.
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D. Regulatory Uncertainty

Before the advent of retail competition in the U.S., customers located in a particular utility’s service terri-

tory were captive customers of that utility. The utility wasrequired to maintain enough resources to meet

the demand of its captive customers. Deregulation of retailelectricity markets allows customers to choose

electricity suppliers. The prospect of retail competitionleaves utilities in the position of possibly losing

(or gaining) a significant portion of existing demand. If theutility’s neighbors have lower cost generation

available, and the utility loses some of its existing demandwhen retail competition is implemented, then a

plant which was economic when used to meet native demand in the regulated world might not be needed

under retail competition. Also, retail competition might mean that a plant which would not have run under

regulation will be profitable again.

Deregulation of retail electricity markets in the U.S. is taking place at the state level. The EIA pub-

lishes a descriptive summary of state-level deregulation.This information, supplemented by state utility

commission information, allows the construction of a state-level retail competition index.13 The index is a

discrete variable taking on values from 1 to 5, which correspond to:

1. no activity,

2. investigation underway,

3. competition recommended,

4. law passed requiring retail competition, and,

5. competition implemented.

The index measures the level of competition in the retail market. Our interest in is uncertainty. When

the competition index takes a value of two, there is uncertainty about whether the state will implement retail

competition. When the index takes a value of three, there is uncertainty about the form retail competition

will ultimately take. We define a regulatory uncertainty indicator variable (REGUNCERT) which takes a

13A similar index was developed independently by Delmas and Tokat (2005).
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value of one when the competition index above is equal to either two or three, and which takes a value of

zero otherwise.

Consistent with real options theory, we expect firms to be less likely to make changes in the status

of existing generators when there is uncertainty about the outcome of retail deregulation. Approximately

20.5%14 of our total samples observations occur during a period of regulatory uncertainty. As detailed

in Tables V and VII, there are a total of 338 instances of shutdowns, startups, and abandonments in our

sample. Of these, only 11, or 3.25%, take place during periods of regulatory uncertainty.

E. Portfolio Effects

The decision to shutdown, startup, and/or abandon a plant may depend on the size of the firm. A firm which

owns a large amount of capacity may be able to reassign workers when it makes the decision to shutdown

or abandon an existing plant, whereas a smaller firm may be forced to layoff workers. As pointed out by

Moel and Tufano (2002), large firms have greater opportunityto subsidize less profitable plants. We use

two measures of firm size, the total capacity owned by the firm and the total number of plants owned by

the firm. The summary statistics in Table II show that there isa great deal of variation in the size of the

firms in our sample.

IV. Status Change Definitions

For our purposes, the key variable from EIA Form 860 is the “status” of the plant. The relevant status codes

are

• OP - operating,

• SB - standby, and,

14In Table II we report that the mean value of the regulatory uncertainty variable is 0.217. In the calculation of the statistics in
Table II we use only one observation per state-year, not every observation.
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• RE - retired.

Details are found in Appendix C.

A plant which has status code OP is available for operation. Aplant which has status code SB has been

shutdown, or mothballed. A plant which has status RE has beenabandoned, or retired, and cannot return

to service.

Consider a plant which is operating (status OP) in the current year. Next year, the plant may either con-

tinue to operate (remain in status OP) or move to standby (SB).15 We define a “shutdown” to be movement

from status OP in yeart to status SB in yeart +1.16 Table III documents the occurence of shutdowns by

year in our sample. For example, of the 832 plants which were operating in 2004, 820 continued to operate

in 2005 while 12 were shutdown. For the full sample there are atotal of 76 instances of shutdown versus

6,539 instances of a operating plant remaining in operatingmode.

Consider a plant which was previously shutdown, i.e., a plant which is on standby (SB) in the current

year. Next year the plant may either startup (move to status OP), remain shutdown (SB), or be abandoned

(move to status RE). We define a “startup” to be movement from status SB in yeart to status OP in year

t + 1. We define an “abandonment” to be movement from status SB in yeart to status RE in yeart + 1.

Table IV documents occurrences of these alternatives by year in our sample. For example, of the 188

plants which were on standby in 2004, 153 were still on standby in 2005, 22 were started up, and 13

were abandoned. For the entire sample, there are a total of 184 instances of startup and 78 instances of

abandonment.
15While it is possible to move directly from status OP (operating) to status RE (retired), such moves are rare and are not driven

purely by spark spread economics.
16It is conceivable that the status of a plant could change morethan once per year. The annual frequency of our data is not fine

enough to observe such changes. Our results therefore provide a lower bound on the exercise of managerial flexibility. Wethank
Afzal Siddiqui for pointing this out.
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V. Shutdown

In this section we examine the decision to shutdown an operating plant, i.e., to move from status code

OP to status code SB. Table V presents comparative univariate statistics for plants which were shutdown

and those which continued to operate. The descriptive variables are divided into four categories - macroe-

conomic, firm-specific, plant-specific, and real options, i.e., measures of uncertainty. The last column

presents differences. All of these differences are significant at the 5% or 1% level.

Beginning with the macro variables, plants tend to be shutdown when projected reserve margins are

high. High reserve margins imply low future profitability. Plants are more likely to be shutdown when

expected future profitability is low.

We expect interest rates to have a positive relationship with shutdowns. The higher are interest rates,

the lower is the present value of future cash flows, and the higher should be the probability that a plant

will shutdown. The univariate statistics in Table V suggestexactly the opposite - plants tend to shutdown

when interest rates are lower. However, reserve margin and interest rates are negatively correlated.17 We

believe that, when considered in isolation, interest ratesare simply proxying for reserve margin. The

multivariate analysis below confirms this conjecture. Whenwe control for reserve margin, the interest

rates and shutdown probabilities are positively related.

The firm-specific variables are the total capacity (in units of MW) owned by the firm and the total

number of plants owned by the firm. Table V indicates that firmswhich shutdown plants tend to be much

smaller than firms which continue to operate existing plants, as measured both by total capacity owned and

by total number of plants. We think there are at least two potential explanations for this effect. First, smaller

firms have fewer opportunities to subsidize less profitable plants. Second, and perhaps more important,

many of the small firms in our sample are firms whose primary business is not electricity generation.18

17Slower economic growth means slower growth in the demand forelectricity and therefore higher reserve margins. Slower
economic growth also tends to reduce interest rates. In our data the simple correlation coefficient between interest rates and
reserve margin is -0.35. In PJM, where the majority of statuschanges take place, the correlation is -0.60.

18Of the 212 total firms in the sample, 27 own only one plant.
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These firms do not have the same level of in-house maintenanceexpertise as do firms whose primary

business is electricity generation. When the plants owned by these firms age and become relatively less

cost effective, it is more costly for these firms to undertakethe maintenance required to keep the plant

operational, hence they are more likely to shutdown the plant.

Turning to the plant-specific variables, plants which shutdown are on average older, less efficient, and

smaller than plants which continue to operate.

Spark spread volatility and the regulatory uncertainty indicator variable are both measures of uncer-

tainty and ought to matter if real options effects are important. Consistent with real options theory, the

table shows that shutdowns are more likely when (i) spark spread volatility is lower, and, (ii) there is less

uncertainty about the outcome of retail deregulation. The differences are large.

On average spark spread volatility for plants which shutdown is 31% less than spark spread volatility

for plants which continue to operate. The regulatory uncertainty data is even more striking. Of the total

8,189 observations, 20.5% occur during times of regulatoryuncertainty. Table V shows that, of the 76

individual instances of shutdown in our sample, onlyone ( 1
76 = 0.013) occurs during a time of regulatory

uncertainty. These univariate statistics provide strong circumstantial evidence for the existence of real

options effects. In the next subsection we turn to a multivariate analysis.

A. Binary Logit Regression

Consider planti which burns fuelj and is located in regionk. We begin our multivariate analysis using a

binary logit specification, as follows.19

ISB
i,t+1 = α+(β1∗RMk,t+1)+ (β2∗T10t)+ (β3∗EFFi)+ (β4∗SIZEi)+ (β5∗TOTCAPi)

+(β6∗SPRDSDi jk,t)+ (β7∗REGUNCERTt)+ ε, (5)

19We do not includeAGE as a regressor. Because older plants tend to be less efficient, AGE andEFF are highly collinear.
Similarly, the total capacity owned by a firm (TOTCAP) and the total number of plants (TOTPLT) are highly collinear. We choose
to omit TOTPLT in the regression specification.
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where

ISB
i,t+1 is an indicator variable which takes the value of zero if plant i was operating in yeart and operating

in yeart +1, and which takes a value of one if planti was operating in yeart and shutdown in year

t +1,

RMk,t+1 is the projected reserve margin for regionk and yeart +1,

T10t is the ten year treasury rate for yeart,

EFFi is the efficiency of planti,

SIZEi is the capacity of planti,

TOTCAPi is the total capacity owned by the firm which owns planti,

SPRDSDi jk,t is the standard deviation of yeart spark spread for planti which burns fuelj and is located

in regionk, and,

REGUNCERTt is an indicator variable which takes a value of one in years inwhich the outcome of retail

deregulation is uncertain and a value of zero otherwise.

The first five regressors,RM throughTOTCAPshould matter in both a traditional discounted cash flow

analysis and a real options framework. The last two regressors, SPRDSDandREGUNCERT, are mea-

sures of uncertainty and should matter if the owners of plants consider real options effects when mak-

ing shutdown decisions. Table VI presents the results. The table presents the average marginal effects

(

∂Prob(ISB= 1)/∂x
)

of each independent (x) variable. For the indicator variable REGUNCERTthe table

presents the change in the probability of a shutdown when thevariable changes from zero to one. We

begin by including each independent variable separately. Each coefficient is significant and the signs are

consistent with the summary statistics in Table V.
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B. Individual Regressions

Analyzing each variable separately allows us to get a feel for which of the variables is most important.

Expected future profitability has the most explanatory power for the shutdown decision. Among the indi-

vidual regressions, theRM regression has the greatest psuedo-R2 (14.3%), the greatest log-likelihood, and

the lowest values for both information criteria statistics, AIC andBIC. The coefficient onRM is positive

indicating that plants are more likely to be shutdown when there is a greater excess of existing capacity.

As discussed above, higher reserve margins imply lower wholesale electricity prices and therefore less

valuable plants. Plants tend to shutdown when expected future profitability is low.

The coefficients for the real options variablesSPRDSDandREGUNCERTare negative and significant.

Increases in spark spread volatility and regulatory uncertainty each reduce the probability of shutting down

an operating plant.

C. Full Regression

The last column of Table VI shows that, with one exception, the insights gained from the individual re-

gressions continue to hold when all the independent variables are included in the same regression.20 Most

importantly, the coefficients onSPRDSDandREGUNCERTremain negative and significant. Consistent

with our priors, increases in either spark spread volatility or regulatory uncertainty decrease the probability

of shutting down an operating plant even when we control for other factors likely to affect the shutdown

decision.

Figure 1 plots the probability of shutdown as a function of reserve margin, based on the regression

results from Table VI. The top panel presents the probability of shutdown for the cases of regulatory

uncertainty (blue circles) and no uncertainty (red squares). At low values of reserve margin (high future

20The exception is that the sign ofT10 changes from negative to positive, consistent with our priors about the effect of interest
rates on the option to shutdown.
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profitability), the probability of shutting down an operating plant is near zero regardless of the regulatory

environment.

At higher values of reserve margin (lower values of future profitability) the probability of shutting down

an operating plant increases dramatically, but only for thecase in which there is no regulatory uncertainty.

In the presence of regulatory uncertainty the probability of shutting down an operating plant is small for

any value of reserve margin. Uncertainty in the regulatory environment translates in to uncertainty about

plant profitability, hence plant owners are more hesitant toshutdown operating plants.

The bottom panel of Figure 1 presents the probability of shutting down an operating plant as a function

of reserve margin for three values of spark spread volatility - $10/MWh (blue circles), $30/MWh (red

squares), and $100/MWh (green triangles).21 When reserve margin is low (future profitability is high), the

probability of shutting down an operating plant is small, irrespective of spark spread volatility. In this case

the spark spread options which comprise the plant are effectively in-the-money and optionality constitutes

a relatively small part of the plant’s value, so spark spreadvolatility is less important to the shutdown

decision.

When reserve margin is high (future profitability is low), the spark spread options which comprise the

plant are out-of-the-money, optionality is the main sourceof the plant’s value, and spark spread volatility

is very important to the shutdown decision. When spark spread volatility is high, the option value of the

plant is correspondingly high and the probability of shutdown is near zero regardless of reserve margin.

When reserve margin is high and spark spread volatility is low, the options which comprise the plant are

both out-of-the-money and the volatility of the underlyingasset (the spark spread) is low, rendering the

options nearly worthless. As a result, the probability of shutting down an operating plant increases in

reserve margin. As Table VI and Figure 1 make clear, these effects are both statistically and economically

significant.

21We choose to use $10/MWh, $30/MWh, and $100/MWh in Figure 1 toapproximately represent the minimum, mean, and
maximum values observed in our sample.
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VI. Startup and Abandonment

In this section we examine the decisions to startup and abandon a plant which was previously shutdown.

Table VII presents comparative univariate statistics for plants which are in the shutdown mode in yeart and

either (i) remain on shutdown (SB), (ii) startup (OP), or (iii) are abandoned (RE) in yeart +1. For those

plants which either startup or are abandoned, the table presents differences relative to plants which remain

shutdown.

A. Startup

Consider first plants which startup. Plants tend to startup when projected reserve margins are low and

therefore expected future profitability is high. Consistent with the discussion above, we expect startups to

be more likely when interest rates are low and therefore the present value of future cash flows is high. Table

VII shows exactly the opposite - startups tend to happen wheninterest rates are high, again reflecting the

negative correlation between interest rates and reserve margin. Table VII also shows that firms which restart

plants are not significantly different in size than firms for which plants remain shutdown, as measured by

either total capacity or total number of plants.

Plants which startup are on average younger, more efficient,and larger than plants which remain shut-

down. According to the theory, important determinants of the decision to shutdown and/or startup a plant

are the cost involved doing so, both the one time costs and continuing costs. We proxy for startup costs by

calculating the amount of time (in years) that a plant has been shutdown. The assumption is that a plant

which has been shutdown for a long period of time has higher startup costs than an otherwise similar plant

which has been shutdown for a shorter length of time.22 Plants which startup have been shutdown for a

22In general, the cost to shutdown a plant is small relative to the cost to restart a plant. The cost to restart varies with the
level of maintenance performed while the plant is shutdown,and therefore is a function of managerial priorities. We ignore the
cost to shutdown and we focus on one single technology (simple cycle combustion turbines), thereby eliminating variation across
technology types. A more detailed discussion based upon conversations with industry experts can be found in Appendix B.We
thank Steve Marshall of Lakeland Electric and Paul D. Clark II of the City of Tallahassee for sharing their insights and experience.
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shorter period of time (1.16 years) that plants which remainshutdown (2.55 years) indicating that plants

which startup have lower startup costs than plants which remain shutdown.

Turning to the real options variables, Table VII shows that plants which startup have higher spark

spread volatility than plants which remain shutdown. Higher spark spread volatility means that the options

which comprise the plant have significant option value whichcan be captured if the plant is operational,

therefore increasing the probability of startup.

Table VII also shows that startups tend to occur when uncertainty about the outcome of retail deregula-

tion is low. Of the 184 total instances of startup in our sample, only eight (8
184 = 0.031) took place during

a time of regulatory uncertainty.

B. Abandonment

Next consider plants which are abandoned. The last two columns of Table VII show that plants tend to be

abandoned when projected reserve margins are high and expected future profitability therefore is low.

Firms which abandon plants tend to be much (three to four times) larger than those which do not. The

size of the firm may well serve as a proxy for abandonment costs. A large electric utility which wants to

build a new plant may have a very hard time locating and obtaining permits for a new site. A much less

expensive and less time consuming alternative is to use an existing site. By abandoning an existing plant,

the utility can free up space for the new plant. The abandonment cost in this case is positive, it looks like a

salvage value.

Abandonments take place when spark spread volatility is lowand when uncertainty about retail dereg-

ulation is low. Specifically, spark spread volatility for plants which are abandoned is 27.5% less than spark

spread volatility for plants which remain shutdown. Only two of the total 78 abandonments (2
78 = 0.026)

in the sample took place during times of regulatory uncertainty.
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C. Startup and Abandonment Multinomial Logit Regression

We use a multinomial logit regression to examine startup andabandonment decisions. The advantage

of a multinomial logit regression is that it allows us to consider the startup and abandonment decisions

simultaneously.

IOPRE
i,t+1 = α+(β1∗RMk,t+1)+ (β2∗T10t)+ (β3∗EFFi)+ (β4∗SIZEi)+ (β5∗TOTCAPi)

+(β6∗SBTIMEi,t)+ (β7∗SPRDSDi jk,t)+ (β8∗REGUNCERTt)+ ε, (6)

where

IOPRE
i,t+1 is an indicator which is equal to zero if planti was on standby in yeart and operating in yeart +1,

equal to one if planti was on standby both in yeart and in yeart +1, equal to two if planti was on

standby in yeart and retired in yeart +1,

SBTIMEi,t is the length of time, in years, that planti has been shutdown as of yeart,

and all the other variables are as defined above. The results are presented in Table VIII.23 The table presents

the average marginal effects
(

∂Prob(IRE = 1)/∂x
)

of each independent (x) variable. For the indicator vari-

ableREGUNCERTthe table presents the change in the probability of an abandonment when the variable

changes from zero to one.

C.1. Startup

The top panel of Table VIII presents regression results for startup from equation (6). As was the case for

shutdowns, the individual regressions show that expected future profitability is the single most important

factor driving startups. The last column presents the results for the full model. The key drivers of the

23The startup (top panel) and abandonment (middle panel) results in Table VIII are from one multinomial logit regression.That
is, each column in Table VIII reports the outcome of a single regression, the goodness of fit statistics for which are reported in the
lower panel.
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startup decision are expected future profitability (RM), plant size (SIZE), startup costs (SBTIME), and the

regulatory environment (REGUNCERT). Startups are more likely when expected future profitability is

higher, for larger plants, and when startup costs are lower.Regulatory uncertainty reduces the probability

of starting up a plant which was previously shutdown.

In the individual startup regression the coefficient on spark spread volatility (β7 = 1.725) is positive

and strongly significant. Higher spark spread volatility increases the option value of the plant itself and

therefore increases the probability of startup. However, in the overall regression, the coefficient on spark

spread volatility (β7 = 0.613) is reduced in magnitude from the individual regressionand is no longer

significant. We discuss this further in the“Startup and Plant Size” subsection below.

C.2. Abandonment

The middle panel of Table VIII presents the results for abandonment. The key drivers of the abandonment

decision are plant size (SIZE), firm size (TOTCAP), startup cost (SBTIME), and spark spread volatility

(SPRDSD).

Importantly, the coefficient on spark spread volatility is negative and strongly significant in both the

individual regression and the full regression. Higher spark spread volatility increases the option value of

the plant in question and therefore decreases the probability of abandonment.

In the full model, regulatory uncertainty is not important for making the abandonment decision. Be-

cause plants which were previously shutdown are “out-of-the-game” already, abandoning the plant has

little effect on the firm’s cash flows. The prospect of losing customers with the advent of retail competition

is therefore less important for abandonment decisions.

19



C.3. Graphical Representation

Figure 2 plots, on the same graph, the probabilities of startup (OP, red squares), shutdown (SB, blue circles),

and abandonment (RE, green triangles) as a function of reserve margin. The figures are based upon the full

regression (last column) in Table VIII.

The upper panel presents the cases of regulatory uncertainty (right) and no uncertainty (left). Compari-

son of the upper panels shows that the existence of regulatory uncertainty has little effect on the probability

of abandonment. The probability of abandonment (green triangles) is nearly identical in the upper left and

upper right panels.

However, regulatory uncertainty significantly reduces theprobability of startup. The probability of

startup (red squares) is noticeably reduced in the presenceof regulatory uncertainty (upper right panel)

relative to the case of no uncertainty (upper left panel). When plant owners are uncertain about the outcome

of retail deregulation and thus about potential gains or losses in retail customers, they delay the decision to

restart plants which may otherwise have restarted.

The lower panel of Figure 2 presents the cases of low ($10/MWh, left) and high ($100/MWh, right)

spark spread volatility. Comparison of the lower left and lower right panels shows that the probability of

startup (red squares) increases with spark spread volatility.24 As discussed above, this result is due to the

option-like nature of a power plant. Higher spark spread volatility increases the option value of the plant

and therefore increases the probability of startup.

Comparison of the lower left and lower right panels of Figure2 shows that spark spread volatility

has a significant impact on the probability of abandonment. When spark spread volatility is low, the

option value of the plant is low and the probability of abandonment (green triangles) increases as reserve

margin increases. However, when spark spread volatility ishigh, the option value of the plant is high

24Even though the effect of spark spread volatility on startupprobability is large (as demonstrated by the curves with thered
squares in the lower left and right panels of Figure 2), it is not statistically significant.
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and the probability of abandonment is small regardless of reserve margin. This effect is statistically and

economically significant.

D. Startup and Plant Size

In the regression results for startup and abandonment in Table VIII the coefficient on plant size (SIZE) is

strongly significant. Large plants are more likely to startup and less likely to be abandoned.25 Figure 3

plots histograms of the distribution of plant size for plants which startup (top panel) and plants which are

abandoned (bottom panel). The figure makes obvious that all of the plants which are abandoned (and most

of the plants which are started up) are small, less than 25 MW.

We repeat the regression from equation (6) for small plants,with less than 25 MW capacity. In order to

save space we do not report the results in a table. The fit of theoverall regression (psuedo-R2 = 40.3%) is

much better than the full sample regression (psuedo-R2 = 29.0%) reported in Table VIII. The coefficients

on the real options variables are reduced in magnitude from the full sample regression. While regulatory

uncertainty was signficant in the full sample regressions (β8 = −0.064, significant at 1%), it is no longer

significant when the regression is restricted to small plants. The implication is that regulatory uncertainty

matters for startup decisions, but not for the smallest plants.

It is not possible to repeat the multinomial logit regression for large plants because all abandonments

involve very small plants. Instead we perform binary logit regression for startup, similar to the full shut-

down regression reported in Section V, with the sample limited to plants larger than 25 MW. In order to

save space we do not report the results in a table. In contrastto the results presented in Table VIII, the

coefficient on spark spread volatility isβ7 = 2.455 and significant at the 1% level. Spark spread volatility

is important for startup decisions for all except the smallest plants.

25Recall from Table VII the average size for plants which startup is 46.6 MW, while the average size for plants which are
abandoned is 11.9 MW.

21



VII. Conclusions

We examine the real options to shutdown, startup, and abandon existing power plants. We find strong

evidence of real options effects. Consistent with the theory we find that an increase in spark spread volatility

decreases the probability that an operating plant will be shutdown and decreases the probability that a plant

which was previously shutdown will be abandoned. We also findthat an increase in spark spread volatility

increases the probability that a plant which was previouslyshutdown will be started up.

Regulatory uncertainty, specifically uncertainty about the outcome of deregulation in retail electricity

markets, decreases the probability of shutting down plantswhich are operating and decreases the probabil-

ity of starting up a plant which was previously shutdown. We find no evidence that regulatory uncertainty

affects abandonment decisions.
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Table I
Plant Summary Statistics

The table presents summary statistics for the age (to the nearest year), size (megawatts, MW), and
efficiency (%) of plants in the sample. The ages are calculated based upon the first year a plant appears in
the sample.

Age (yrs) Size (MW) Efficiency
NOBS 1,121 1,121 1,121
Mean 18.6 43.1 24.7%
Stdev 14.1 41.0 4.6%
Min 0 0.4 5.4%
Max 60 246.0 41.8%

Table II
Macro, Real Options, and Firm Variables Summary Statistics

The table presents summary statistics for macroeconomic, real options, and firm-specific variables.RM is
reserve margin.T10 is the ten year treasury bond rate.SPRDSDis the standard deviation of the spark
spread, expressed in units of $/MWh.REGUNCERTis an indicator variable which takes the value of one
during periods of regulatory uncertainty; see the discussion in Section III for details.TOTCAPis the
average (over years) total capacity owned by the firm, expressed in units of MW.TOTPLTis the average
(over years) total number of plants owned by the firm.

Macro Real Options Firm
RM T10 SPRDSD REGUNCERTTOTCAP TOTPLT

NOBS 24 8 8,189 161 212 212
Mean 19.8% 4.71% $31.19 0.217 1,388 15.5
Stdev 5.3% 0.62% $15.23 0.414 2,984 24.4
Min 11.5% 4.01% $12.07 0 1 1
Max 30.1% 6.03% $187.44 1 21,561 202
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Table III
Shutdown: Transitions from OP to OP/SB by Year

Number of plants classified as operating (OP) in thefrom yearand either operating (OP) or shutdown
(SB) in theto year.

from year to year OP SB Total
2001 2002 695 2 697
2002 2003 803 1 804
2003 2004 808 43 851
2004 2005 820 12 832
2005 2006 829 16 845
2006 2007 848 0 848
2007 2008 851 2 853
2008 2009 885 0 885

Total 6,539 76 6,615

Table IV
Startup and Abandonment: Transitions from SB to OP/SB/RE byYear

Number of plants classified as shutdown (SB) in thefrom yearand either operating (OP), shutdown (SB),
or retired (RE) in theto year.

from year to year OP SB RE Total
2001 2002 60 221 1 282
2002 2003 47 198 1 246
2003 2004 9 143 49 201
2004 2005 22 153 13 188
2005 2006 1 158 6 165
2006 2007 6 173 0 179
2007 2008 32 139 2 173
2008 2009 7 127 6 140

Total 184 1,312 78 1,574
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Table V
Shutdown: Univariate Statistics

Conditional on a plant operating in yeart, the table presents statistics for macroeconomic variables,
firm-specific variables, plant-specific variables, and realoptions variables (i.e., measures of uncertainty)
for plants which continued to operate (did not shutdown, OP)in yeart +1 and those which shutdown
(SB) in yeart +1.

Type Variable OP SB delta
Macro Reserve Margin (%) 19.1% 26.9% -7.8%∗∗∗

Interest Rate (%) 4.68% 4.49% 0.19%∗∗∗

Firm Total Capacity (MW) 6,210 2,469 3,741∗∗∗

Total Number of Plants 56.5 28.4 28.2∗∗∗

Plant Age (years) 21.4 24.4 -3.1∗∗

Efficiency (%) 24.8% 23.4% 1.4%∗∗

Size (MW) 45.1 31.9 13.3∗∗∗

Real Options Spark Spread Stdev ($/MWh) $31.04 $21.37 $9.66∗∗∗

Regulatory Uncertainty Dummy 0.240 0.013 0.227∗∗∗

NOBS 6,539 76
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Table VI: Shutdown Binary Logit Estimation Results

Consider planti which burns fuelj and is located in regionk. The full model is given by

ISB
i,t+1 = α+(β1∗RMk,t+1)+ (β2∗T10t)+ (β3∗EFFi)+ (β4∗SIZEi)+ (β5∗TOTCAPi)

+(β6∗SPRDSDi jk,t)+ (β7∗REGUNCERTt)+ ε.

The dependent variableISB
i,t+1 is an indicator which is equal to zero if planti was operating both in yeart and in yeart +1, and equal to one if

plant i was operating in yeart and shutdown in yeart +1. RMk,t+1 is the projected reserve margin for regionk for yeart +1. T10t is the ten year
treasury bond rate for yeart. EFFi is the efficiency of planti. SIZEi is the capacity of planti. TOTCAPi is the total capacity for the firm which
owns planti. SPRDSDi jk,t is the standard deviation of yeart spark spread for planti which burns fuelj and is located in regionk. REGUNCERTt
is the yeart retail competition index. The table presents the average marginal effects

(

∂Prob(ISB= 1)/∂x
)

of each independent (x) variable. For
the indicator variables (REGSTandREGUNCERT) the table presents the change in the probability of a shutdown when the variable changes
from zero to one.∗∗∗indicates significance at the 1% level,∗∗indicates significance at the 5% level, and∗indicates significance at the 10% level.
Each regression has 6,515 observations.

RM 0.252∗∗∗ 0.235∗∗∗

T10 -0.902∗∗∗ 0.799∗∗

EFF -0.064∗∗ -0.047∗

SIZE -0.133∗∗ -0.052
TOTCAP -1.718∗∗∗ -1.416∗∗∗

SPRDSD -1.016∗∗∗ -0.609∗

REGUNCERT -0.014∗∗∗ -0.012∗∗∗

pseudo-R2 14.3% 1.2% 0.7% 1.3% 4.1% 6.0% 4.0% 22.6%
Log-likelihood -355.8 -409.9 -412.0 -409.8 -398.1 -390.3 -398.4 -321.0
AIC 715.6 823.8 828.0 823.7 800.1 784.5 800.9 658.1
BIC 729.2 837.4 841.6 837.2 813.7 798.1 814.5 712.5
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Table VII
Startup and Abandonment: Univariate Statistics

Conditional on a plant being shutdown in yeart, the table presents statistics for macroeconomic variables,
firm-specific variables, plant-specific variables, and realoptions variables (i.e., measures of uncertainty)
for plants which remained shutdown (SB) in yeart +1, which started up (moved to operating, OP) in year
t +1, and those which were abandoned (retired, RE) in yeart +1. For startup and abandonment, thedelta
column shows the difference from the the plants which remained on standby.

Type Variable SB OP delta RE delta
Macro Reserve Margin (%) 18.8% 16.4% 2.4%∗∗∗ 27.0% -8.2%∗∗∗

Interest Rate (%) 4.78% 5.13% -0.35%∗∗∗ 4.51% 0.27%∗∗∗

Firm Total Capacity (MW) 2,686 2,335 351 8,982 -6,296∗∗∗

Total Number of Plants 27.5 25.7 1.8 83.9 -56.4∗∗∗

Plant Age (years) 23.8 21.9 1.9∗ 31.0 -7.2∗∗∗

Efficiency (%) 23.2% 24.2% -1.0%∗∗∗ 20.7% 2.5%∗∗∗

Size (MW) 31.6 46.6 -15.0∗∗∗ 11.9 19.8∗∗∗

Time Shutdown (years) 2.55 1.16 1.39∗∗∗ 2.55 0.00
Real Options Spark Spread Stdev ($/MWh) $32.27 $36.10 -$3.83∗∗∗ $23.39 $8.88∗∗∗

Regulatory Uncertainty Dummy 0.075 0.043 0.031∗ 0.026 0.049∗∗

NOBS 1,312 184 78

29



Table VIII: Startup And Abandon Multinomial Logit Estimation Results

Consider planti which burns fuelj and is located in regionk. The full model is given by

IOPRE
i,t+1 = α+(β1∗RMk,t+1)+ (β2∗T10t)+ (β3∗EFFi)+ (β4∗SIZEi)+ (β5∗TOTCAPi)

+(β6∗SBTIMEi,t)+ (β7∗SPRDSDi jk,t)+ (β8∗REGUNCERTt)+ ε.

The dependent variableIOPRE
i,t+1 is an indicator which is equal to zero if planti was on standby in yeart and operating in yeart +1, equal to one if

plant i was on standby both in yeart and in yeart +1, equal to two if planti was on standby in yeart and retired in yeart +1. RMk,t+1 is the
projected reserve margin for regionk for yeart +1. T10t is the ten year treasury bond rate for yeart. EFFi is the efficiency of planti. SIZEi is
the capacity of planti. TOTCAPi is the total capacity for the firm which owns planti. SBTIMEi,t is the length of time, in years, that planti has
been shutdown as of yeart. SPRDSDi jk,t is the standard deviation of yeart spark spread for planti which burns fuelj and is located in regionk.
REGUNCERTt is the yeart retail competition index. The table presents the average marginal effects

(

∂Prob(ISB= 1)/∂x
)

of each independent
(x) variable. For the indicator variables (REGSTandREGUNCERT) the table presents the change in the probability of a startup when the
variable changes from zero to one.∗∗∗indicates significance at the 1% level,∗∗indicates significance at the 5% level, and∗indicates significance at
the 10% level. Each regression has 1,574 observations.

Startup RM -0.835∗∗∗ -0.757∗∗∗

T10 7.764∗∗∗ -2.145
EFF 0.542∗∗ 0.121
SIZE 1.117∗∗∗ 0.947∗∗∗

TOTCAP -4.064∗ -6.124∗∗

SBTIME -0.039∗∗∗ -0.035∗∗∗

SPRDSD 1.725∗∗∗ 0.613
REGUNCERT -0.046 -0.064∗∗∗

Abandon RM 1.057∗∗∗ 0.242∗

T10 -4.469∗∗∗ -1.237
EFF -0.588∗∗∗ -0.004
SIZE -2.664∗∗∗ -4.363∗∗∗

TOTCAP 10.965∗∗∗ 12.322∗∗∗

SBTIME 0.002 0.013∗∗∗

SPRDSD -3.229∗∗∗ -1.367∗∗∗

REGUNCERT -0.033∗∗ 0.010
pseudo-R2 9.6% 3.6% 1.9% 4.4% 7.8% 4.6% 2.7% 0.3% 29.0%
Log-likelihood -784.5 -836.9 -852.0 -830.3 -800.8 -828.7 -845.0 -865.3 -616.1
AIC 1,577 1,682 1,712 1,669 1,609 1,665 1,698 1,739 1,268
BIC 1,599 1,703 1,734 1,690 1,631 1,687 1,719 1,760 1,365
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Figure 1
Shutdown Probability
The top panel presents the probability of shutting down an operating plant as a function for reserve margin for
the cases of regulatory uncertainty (blue circles) and no uncertainty (red squares). The bottom panel presents the
probability of shutting down an operating plant as a function for reserve margin for three values of spark spread
volatility - $10/MWh (blue circles), $30/MWh (red squares), and $100/MWh (green triangles).
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Figure 2
Startup and Abandonment Probability
For plants which were previously shutdown, the figure present the probability of startup (OP, red squares), remaining
on standby (SB, blue circles), and abandonment (RE, green triangles) as a function of reserve margin. The top
panel shows the probabilities for no regulatory uncertainty (left) and regulatory uncertainty (right). The bottom
panel shows the probabilities for low spark spread volatility of ($10/MWh, left) and high spark spread volatility
($100/MWh right).

0.
00

0.
20

0.
40

0.
60

0.
80

1.
00

P
ro

ba
bi

lty

0.10 0.15 0.20 0.25 0.30
Reserve Margin

OP SB RE

No Uncertainty

0.
00

0.
20

0.
40

0.
60

0.
80

1.
00

P
ro

ba
bi

lty

0.10 0.15 0.20 0.25 0.30
Reserve Margin

OP SB RE

Regulatory Uncertainty

0.
00

0.
20

0.
40

0.
60

0.
80

1.
00

P
ro

ba
bi

lty

0.10 0.15 0.20 0.25 0.30
Reserve Margin

OP SB RE

Spread Vol = $10/MWh

0.
00

0.
20

0.
40

0.
60

0.
80

1.
00

P
ro

ba
bi

lty

0.10 0.15 0.20 0.25 0.30
Reserve Margin

OP SB RE

Spread Vol = $100/MWh

32



Figure 3
Histogram of Capacity for Startup and Abandonment
For plants which were previously shutdown, the figure present histograms of capacity. The top panel shows the
distribution of capacity for plants which startup. The bottom shows the distribution of capacity for plants which are
abandoned.
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Appendix A. Heat Rate Data

Heat rate data is available for 943 of the 1,121 plants in our sample. In order to estimate the heat rates

of the remaining 178 plants, we calculate mean heat rates by size and in-service year. The heat rate for a

combustion turbine varies (1) inversely with the size of theplant (bigger machines are more efficient), and

(2) directly with the age of the plant (newer machines are much more efficient). We classify plants into size

and age categories (five of each) and then calculate the average heat rate in each age-size category based

upon the heat rates available from CEMS and Form 860. We then use these average heat rates for other

plants in these size-age categories.

For example, heat rate data is available for 318 plants whichwent into service in the 1970s and with

capacity less than 50MW. The average heat rate for these 318 plants is 16.055 MMBtu/MWh. There are 16

plants which fall into the same size-age category and for which no heat rate data are available. For those

16 plants we assign the heat rate to be 16.055 MMBtu/MWh.

Heat rate data is available for 26 plants which went into service in the 2000s and with capacity in the

100-150 MW range. The mean heat rate for these 26 plants is 11.880 MMBtu/MWh. There are 5 plants

which fall into the same size-age category and for which no heat rate data are available. For those 5 plants

we assign the heat rate to be 11.880 MMBtu/MWh. And so forth and so on.
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Appendix B. Startup and Shutdown Costs

Most of the problems encountered in restarting a plant are associated with the control system, i.e., instru-

mentation, electronic controls, and wiring. In general these systems do not vary greatly with the size of

the plant in question. Mechanical issues involved in shutdown and restart are primarily concerned with

corrosion. Core preservation requires layup chemicals.26

Restarting a plant begins with checking the control loops. Maintenance personnel attempt to “shoot-

the-loop”, i.e., to check that each control loop is functioning and, if not, to determine where the problem

lies. It is common for systems that were in perfect working order at the time the plant was shutdown to fail

when restart is attempted.

The costs to restart a plant also can vary with the corporate culture of the owner. Oftentimes mainte-

nance of shutdown plants has a lower priority than maintaining operating plants. A willingness to spend

money to maintain these systems while the plant is shutdown greatly reduces the one time cost associated

with the actual restart. However, management may not perceive that spending money on a plant which is

not currently operating is a wise investment.

The unfortunate (for our purposes) conclusion is that two plants which are the same size, same age, and

located in the same region can have very different shutdown and startup costs depending on the priorities

of the management team.

In summary, there is no simple way to estimate the costs associated with shutting down and restarting

a plant based strictly upon the data available from EIA. Eachplant is unique and each firm is unique.

As discussed in the main text, we focus on simple cycle gas turbines only, thereby eliminating variation

across technology types. The control system issues discussed above should not vary much with the capacity

of the plant.

26For example, the introduction of nitrogen can prevent oxygen from coming into contact with the core and causing corrosion.

35



Appendix C. Status Codes SB and BU - Definitions and Changes

For every year, EIA provides variable definitions in aLayoutfile accompanying the EIA 860 data. Status

code SB is not defined in theLayout file for the 2001 and 2002 years. However, the 2000Layout file

defines SB as

“Cold Standby (Reserve): deactivated (mothballed), in long-term storage and cannot be made available

for service in a short period of time, usually requires threeto six months to reactivate.”

Beginning in 2003 SB is defined as

“Standby - available for service but not normally used (has little or no generation during the year).”

Status code BU is available only for the 2004-2006 time period. For the 2004-2006 time period, the

definition of SB is unchanged. BU is defined as

“Backup - used for test purposes or emergency such as shortage to power to meet load requirements.”

For the 2007-2009 time period, BU again disappears and SB is defined as

“Standby/Backup - available for service but not normally used (has little or no generation during the

year).”
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