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Abstract
We consider the optimal strategy of R&D expenditure adopted by a firm that engages in
R&D to develop an innovative product to be launched in the market. The firm faces with
technological uncertainty associated with the success of the R&D effort and market uncer-
tainty of the stochastic revenue flow generated by the new product. Our model departs from
most R&D models by assuming that the firm’s knowledge accumulation has impact on the
R&D progress, so the hazard rate of arrival of R&D success is no longer memoryless. Also,
we assume a finite life span of the technologies that the product resides on. In this paper,
we propose efficient finite difference schemes that solve the Hamilton-Jacobi-Bellman formu-
lation of the resulting finite time R&D stochastic control models with an optimal control on
R&D expenditure and an optimal stopping rule on the abandonment of R&D effort. The
optimal strategies of R&D expenditure with varying sets of model parameters are analyzed.
In particular, we observe that R&D expenditure decreases with firm’s knowledge stock and
may even drop to zero when the accumulation level is sufficiently high.

Keywords: stochastic control, R&D model, knowledge accumulation, finite difference
schemes

1 Introduction

R&D efforts that lead to technological innovations provide the engine for economic growth.
R&D process can be visualized as a sequence of iterated cycles of generation of knowledge
that enhance problem solving skill. Quite often, the successful completion of a R&D project
is cumulative. That means it is sequential and building on intermediate results. West and
Iansiti (2003) examine the impact on firm performance in the semiconductor industry arising
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from generation of knowledge through experimentation and retention of knowledge through
experience. They show that projects with high levels of complexity gain from organizational
processes that integrate experience of the specific context of the project. Also, experience
with the technology can be used to narrow the option set to be searched. Several recent
papers have considered the modeling of learning and knowledge accumulation in the R&D
process. Doraszelski (2003) models the hazard rate of arrival of discovery as the sum of
current R&D effort and knowledge stock. The knowledge stock is assumed to grow with R&D
effort and decreases with organizational forgetting (say, due to turnover of experienced staff).
Knowledge accumulation adds path dependence to the dynamic R&D process. Hussain
(2007) considers R&D races with innovation uncertainty and timing uncertainty, where the
hazard rate is modeled as the product of the knowledge stock level and a technical feasibility
parameter. The feasibility parameter is modeled as a Bernoulli random variable, which
assumes value zero when the innovation is technically infeasible. In his R&D race model,
Steinmetz (2009) shows that the level of knowledge stock may exhibit strong impact on the
leader-follower equilibrium. The knowledge effect may outweigh the competition effect, for
example, the leader’s R&D effort may decrease with the lead in knowledge stock. In these
R&D race models with knowledge accumulation, they consider R&D effort as a stochastic
control variable. However, they do not include a stochastic fundamental state variable that
considers market uncertainty. In our model, we allow for the uncertain profit flow rate
generated from launching of the innovative product.

In this paper, we consider R&D process conducted by single firm within a finite time
horizon under both market and technological uncertainty. We also allow for uncertainty to
the life span of the technology. Suppose a firm would like to engage in R&D to develop a
new product using an existing technology, like the development of new iPhones using 3G
wireless technologies. One would expect that the existing 3G technologies may be super-
seded by future generation of mobile telecommunications technologies. The mobile phones
manufactured using 3G technologies will then become obsolete. The exact date for the emer-
gence of a new type of technology may not be certain, the terminal date T that the product
becomes obsolete is modeled by an exponential distribution in our R&D model. Distinctive
from most R&D race models with stochastic control on the R&D effort, we include market
uncertainty of the innovative product in our model where the revenue flow rate is assumed
to follow a stochastic process. The firm is allowed to control its level of R&D expenditure at
any time during R&D (including the right to abandon R&D completely) so as to maximize
the expected value of the net profit from the R&D process. The technological uncertainty is
quantified by the hazard rate of arrival of discovery, which depends on the current level of
R&D effort and the accumulation of knowledge throughout the R&D process. As part of the
solution to the model, we would like to determine the optimal control of R&D expenditure
and the value function of R&D. More specifically, our model aims to address the following
issues:

1. How would the firm’s R&D expenditure evolve under different market conditions, say,
in response to the current level and volatility of the profit flow rate, and the remaining
life span of the relevant technology?

2



2. How would the firm’s R&D expenditure change under varying levels of knowledge
stock? Would the firm put off R&D effort when its knowledge stock reaches certain
threshold level?

Our R&D stochastic control model is formulated using the Hamilton-Jacobi-Bellman
(HJB) optimal control approach. However, the resulting non-linear HJB formulation does not
lead to analytical tractability, so one must resort to numerical method for its solution. There
have been several papers that address the construction of efficient, reliable and accurate
numerical schemes for solving HJB equations in finance. Forsyth and Labahn (2007) provide
a general procedure for numerical solution of single factor optimal control problems in finance.
They show that the discretized scheme is guaranteed to converge to the viscosity solution
of the control problem (relevant to our R&D problem) provided that the discretized scheme
observe consistency, monotonicity and l∞-stability. Wang and Forsyth (2008) show how to
adopt the maximal use of central differencing in the discretization of the HJB equations
in order to achieve higher order of convergence rate while convergence of the numerical
solution to the viscosity solution is ensured at the same time. Huang et al. (2010) propose
a combined fixed point and policy iteration approach for solving the nonlinear equations
resulting from a full implicit discretization of the HJB equations. At each time step, the
policy iteration proceeds by solving a linear equation and finding the control that gives the
best local solution. They also derive sufficient conditions that ensure convergence of the
policy iteration scheme.

Due to path dependence associated with knowledge accumulation in our stochastic R&D
model, the resulting HJB equations contain two state variables: stochastic profit flow rate
and knowledge stock. Also, an optimal stopping feature is included since we allow the firm
to abandon the R&D process optimally when it becomes non-profitable to proceed. We
adopt some of the useful and relevant techniques in the above numerical schemes papers in
the construction of discretized schemes coupled with policy iteration technique to solve the
HJB equations. We also adopt the penalty approximation (Forsyth and Vetzal, 2002) to
approximate the optimality condition associated with the optimal stopping feature in our
model.

The paper is organized as follows. In the next section, we present our finite time R&D
stochastic control model. In particular, we give the details on the modeling of knowledge
accumulation, revenue generated from the delivery of the product, and abandonment right.
We also extend our model to the case where the life span of the technology is uncertain,
the randomness of which is modeled by an exponential distribution. In Section 3, the HJB
formulation of our stochastic control problem is derived, with full attention paid to the
prescription of the auxiliary conditions in the formulation. Following a similar technique
proposed by Windcliff et al. (2004), we deduce the far field boundary condition by adopting
the linear asymptotic boundary condition on the value function. In Section 4, we solve
the HJB equations using the finite difference approach coupled with the policy iteration
technique. In the discretization procedure, special attention is taken to ensure convergence
of the numerical scheme to the viscosity solution of the HJB formulation. Theoretical studies
on the convergence properties of the numerical schemes are also presented. We performed
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numerical tests to verify the theoretical results on convergence of the scheme and examine
the impact of the far field boundary condition on accuracy of the numerical calculations. In
Section 5, we present our numerical studies on the sensitivity analysis of the optimal R&D
expenditure with respect to different model parameters, like the level of knowledge stock
and market conditions. Conclusive remarks are presented in the last section.

2 R&D stochastic control model

We develop a single firm R&D model with finite time horizon subject to both technological
uncertainty and market uncertainty. Unlike most real option models where perpetuity is
assumed, the innovative product to be developed by the R&D process has a finite life. The
modeling assumption is more realistic since technologies associated with commercialized
products always have finite life span. Indeed, as seen in the wireless telecommunications
technologies, the technology life span tends to become much shortened in recent decades.
In this section, we assume that the technology adopted by the innovative commercialized
product has a deterministic finite duration T > 0. Later, we show how to extend our model
to allow for exponentially distributed terminal date of the product.

R&D effort as stochastic control
The market uncertainty is commonly modeled by the hazard rate of arrival of discovery of
the innovative product. Earlier R&D models assume constant hazard rate, independent of
the knowledge accumulation in the R&D process. The resulting memorylessness neglects
history dependence of R&D effort. In our model, we assume that the hazard rate increases
with the firm’s current R&D effort (expenditure) and knowledge stock. Also, the R&D effort
is considered as a control variable and the firm adopts an optimal control strategy in order
to maximize the expected value of the R&D process. This leads to a stochastic control R&D
model.

Let u(t) denote the control variable for the rate of expending R&D effort and z(t) be the
path dependent variable of knowledge stock. Similar to Doraszelski’s knowledge accumula-
tion model (2003), the hazard rate at time t is modeled by

h(t) = au(t) + bz(t), 0 ≤ t ≤ T , (2.1)

where a > 0 and b ≥ 0 are constant parameters. The first term may be interpreted as the
contribution of experimentation to R&D success while the second term may be associated
with experience accumulation (West and Iansiti, 2003). The special case b = 0 corresponds
to memoryless R&D process where knowledge stock plays no role in facilitating R&D success.

We assume that the firm’s knowledge stock z(t) grows with R&D effort u(t) as depicted
by the following differential equation:

dz

dt
= u(t), 0 ≤ t ≤ T , (2.2)

where z(0) = z0 ≥ 0 is the initial knowledge stock of the firm. Here, u(t) is chosen from a
compact set Q where Q ⊂ [0,∞) for t ∈ [0, T ]. Furthermore, we assume the rate of cost c(u)
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incurred in R&D to be a continuous and strictly increasing function. In the literature, the
cost rate function is commonly taken to be a power function in u (Doraszelski, 2003).

Profit flow rate and expected profit
To model the market uncertainty associated with the innovative product, we assume that the
profit flow rate xt generated from the developed product in the market follows the geometric
Brownian motion

dxt = µxt dt + σxt dZt, (2.3)

where µ is the constant drift rate, σ is the constant volatility parameter, and Zt is the
standard Brownian motion. Assuming the usual no-bubble condition, µ is taken to be less
than the riskfree interest rate r.

Suppose at the current time t, the product has been launched in the market. Given that
the life of the product ends at T , where T > t, and conditional on xt = x, the expected
profit earned by the firm from the product is given by

W (x, t) = E

[
∫ T

t

e−r(s−t)xs ds | xt = x

]

=
x

r − µ

[

1 − e−(r−µ)(T−t)
]

, t < T . (2.4)

At time t = T , the profit flow terminates forever, so W (x, T ) = 0.

Abandonment right
In our model, we allow the firm to adopt the irreversible decision of abandonment of R&D.
Note that even at u = 0, the cost c(0) may remain to be positive (say, maintenance of
research facilities), so the abandonment decision helps save the cost of maintaining the R&D
process. The firm may choose to abandon R&D optimally when xt falls to a sufficiently
low level. The analysis of the abandonment right requires the determination of the optimal
stopping rule in our R&D stochastic control problem.

Remarks

1. Calibration of model parameters and specification of cost function
To apply our R&D model to real life applications, one major challenge is the calibration
of the model parameter values. While the parameter values for r, µ and σ can be
calibrated from the observable price process of the product, the calibration of the
parameters a and b in the hazard function and the specification of the cost function
may not be straightforward. By performing various sensitivity analyzes of the optimal
control policy and abandonment decision with respect to different model parameter
values and functional forms of the cost functions, our model may serve the role of
examining how different rates of knowledge stock and R&D costs may affect R&D
policy decision.
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2. Random date of termination of existing technology
So far, we have assumed the date of termination of the existing technology to be deter-
ministic. However, in reality, the arrival of a new technology that makes the product
obsolete may be uncertain. We would like to show how to model this uncertainty in
the life span of the product by assuming the arrival time T of the new technology to
be exponentially distributed with parameter λ = 1

T̄
, where T̄ is the mean of T . In

other words, the arrival time is modeled as the first jump time of a Poisson process
with intensity rate λ and this Poisson process is independent of the profit flow process
xt. The corresponding reward function W (x) then becomes

W (x) =

∫ ∞

0

λe−λuE

[
∫ T

0

e−rsxs ds|T = u

]

du

=

∫ ∞

0

λe−λu

{

x

r − µ

[

1 − e−(r−µ)u
]

}

du

=
x

r + λ − µ
. (2.5)

The inclusion of the feature of random date of termination of the existing technology
amounts to the modification of the reward function, which can be easily incorporated
under the current model formulation.

3 Hamilton-Jacobi-Bellman formulation

Let V (x, z, t) denote the time-t value function of the R&D project conditional on xt = x and
zt = z. Using the Bellman optimality condition, the HJB equation that governs the value
function is given by

V (x, z, t) = lim
dt→0

max(0, sup
u∈Q

{−c(u)dt + h(t)W (x, t)dt

+ [1 − h(t)dt]e−rdtE [V (xt+dt, zt+dt, t + dt)|xt = x, zt = z]}). (3.1)

The above expression indicates that the optimal stopping rule is applied when the firm
either chooses to abandon the project (with zero value being resulted) or continues the R&D
process. When continuation of R&D is optimally chosen, the corresponding optimal control
u∗(t) is determined so that the continuation value is maximized. The continuation value
consists of 3 terms: (i) cost of operating R&D (negative value), (ii) with probability h(t)dt,
R&D succeeds within (t, t + dt) and the expected profit derived from the product is W (x, t),
(iii) with probability 1−h(t)dt, R&D continues at t+dt and the discounted expected value of
the project is given by e−rdtE [V (xt+dt, zt+dt, t + dt)|xt = x, zt = z]. By applying Ito’s lemma,
the last term can be expressed as

E [V (xt+dt, zt+dt, t + dt)|xt = x, zt = z]

= V +
∂V

∂t
dt + µx

∂V

∂x
dt +

σ2x2

2

∂2V

∂x2
dt + u

∂V

∂z
dt + O((dt)

3
2 ),
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where V = V (x, z, t). Substituting the above relation into eq. (3.1), we obtain the following
combined HJB formulation of optimal control on R&D effort and linear complementarity
formulation of the optimal stopping rule at abandonment:

max(−V, sup
u∈Q

{h(t)W (x, t)− [h(t) + r]V +
∂V

∂t
+ µx

∂V

∂x
+

σ2

2
x2 ∂2V

∂x2

+ u
∂V

∂z
− c(u)}) = 0, x > 0, z ≥ 0, t ∈ [0, T ). (3.2)

Auxiliary conditions

Since the R&D process is sure to terminate at T , we have the obvious terminal condition

V (x, z, T ) = 0 (3.3a)

for all values of x and z. In the stopping region, we have abandonment of the project, so the
value function becomes zero for x ≤ x∗(t). Here, x∗(t) is the stopping boundary at time t.
It becomes more tricky to consider the far field boundary conditions at z → ∞ and x → ∞.

(i) At exceedingly high value of z, the hazard rate tends to infinite value. The innovative
product is almost surely to be delivered at the next instant, so

V (x, z, t) → W (x, t), as z → ∞. (3.3b)

(ii) At x → ∞, Forsyth and Labahn (2007) provide the justification of adopting the linear
asymptotic boundary condition on V , where ∂2V

∂x2 → 0. We then have

V (x, z, t) → C1(z, t)x + C2(z, t), as x → ∞. (3.3c)

As x → ∞, one may deduce that the firm increases its R&D effort to the maximum level.
In this case, the optimal control u∗ is independent of x, z and t (Forsyth and Labahn, 2007).
Under these assumptions, we may derive the corresponding partial differential equations for
both coefficient functions C1(z, t) and C2(z, t). The closed form analytic formulas for them
are obtained as follows:

C1(z, t) =
1 − e−(r−µ)(T−t)

r − µ
− e

(aû∗+bz+r−µ)2

2bû∗

√

2π

bû∗
[N(d11) −N(d12)] (3.4a)

and

C2(z, t) = −c(û∗)e
(aû∗+bz+r)2

2bû∗

√

2π

bû∗
[N(d21) − N(d22)], (3.4b)

where û∗ is the supremum value of u within the admissible set of controls, and

d11 = −aû∗ + bz + r − µ√
bû∗

, d12 = d11 −
√

bû∗(T − t),

d21 = −aû∗ + bz + r√
bû∗

, d22 = d21 −
√

bû∗(T − t).

The derivation of these closed form expressions for C1(z, t) and C2(z, t) is presented in
Appendix A.
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4 Construction of numerical schemes and theoretic stud-

ies on performance

In this section, we first discuss the discretization of the HJB equations using the finite
difference approach. We then proceed to show that the proposed numerical scheme satisfies
the relevant properties of consistency, monotonicity and stability. Thus, according to Barles
(1997), solution to the numerical scheme converges to the viscosity solution of the HJB
equations. Next, we describe the solution of the non-linear discretized scheme using the
policy iteration method (Huang et al., 2010). We then present the numerical tests that
demonstrate the convergence of the numerical solution.

We start with the transformation of the linear complimentarity formulation (3.2) into the
penalty approximation formulation (Forsyth and Labahn, 2002). This is done by appending
a penalty term −AV

ε
, where A ∈ {0, 1} and ε is a sufficiently small parameter, such that

the appended term becomes dominant when the state variables lie in the stopping region in
which the R&D process should be optimally abandoned. The corresponding penalized form
can be expressed as

sup
A∈{0,1},u∈Q

{

− ∂V

∂τ
+ µx

∂V

∂x
+

σ2

2
x2∂2V

∂x2
+ u

∂V

∂z
− c(u)

− [h(τ ) + r]V + h(τ )W (x, τ )− AV

ε

}

= 0, (4.1)

where τ = T − t. The corresponding auxiliary conditions are prescribed as follows:

V (x, z, 0) = 0, (x, z) ∈ (0,∞) × [0,∞),

V (0, z, τ ) = 0, (z, τ ) ∈ [0,∞) × [0, T ],

V (x, z, τ ) → W (x, τ ) as z → ∞, (x, τ ) ∈ [0,∞) × [0, T ],

V (x, z, τ ) = C1(z, τ )x + C2(z, τ ) as x → ∞, (z, τ ) ∈ [0,∞) × [0, T ].

For notational convenience, we write the governing equation (4.1) together with the auxiliary
conditions as

F (V ) = 0

where V = V (x, z, τ ) and (x, z, τ ) ∈ [0,∞) × [0,∞) × [0, T ].
The discretized domain is restricted to a finite domain: [0, xmax]× [0, zmax]× [0, T ], where

xmax and zmax are chosen to be sufficiently large. The (j, k, n)th node in the discretized domain
corresponds to xj = j∆x, zk = k∆z and τn = n∆τ , where j = 1, 2, ..., jmax, k = 1, 2, ..., kmax,
and n = 0, 1, ..., N . Let V n

j,k and W n
j denote the numerical approximation to V (xj, zk, τn) and

W (xj, τn), respectively. We also let un
j,k and An

j,k denote the respective control strategy at the
nodal point (xj, zk, τn). In our discretization procedure, we follow the techniques developed
in Forsyth and Labahn (2007) where fully implicit discretization is adopted and approximate
forward / central / backward differencing is applied to various spatial differential operators so
that the condition of positive coefficients is enforced. Using these discretization procedures, it
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can be shown that convergence of the numerical scheme to the viscosity solution is guaranteed
(see Proposition 1). The resulting discretized scheme is obtained as follows:

V n+1
j,k − V n

j,k

∆τ

= sup
An+1

j,k
∈{0,1},un+1

j,k
∈Q

{

ajV
n+1
j+1,k − (aj + bj + cn+1

j,k )V n+1
j,k + bjV

n+1
j−1,k + dn+1

j,k V n+1
j,k+1 + en+1

j,k

}

,

where

aj =
µxj

∆x
+

σ2

2

x2
j

∆x2
, bj =

σ2

2

x2
j

∆x2
,

cn+1
j,k = aun+1

j,k + bzk + r +
un+1

j,k

∆z
+

An+1
j,k

ε
,

dn+1
k =

un+1
j,k

∆z
, en+1

j,k = (aun+1
j,k + bzk)W

n+1
j − c(un+1

j,k ). (4.2)

The coefficients aj, bj, cn+1
j,k and dn+1

j,k are all non-negative. Similarly, for notational conve-
nience, we write the discretized scheme together with the appropriate numerical boundary
conditions as

Gn+1
j,k (V n+1

j,k , V n+1
j+1,k, V

n+1
j−1,k, V

n+1
j,k+1, V

n
j,k) = 0,

where V n
j,k is the grid value function defined at (xj, zk, τn+1), j = 0, 1, ..., jmax, k = 0, 1, ..., kmax,

n = 0, 1, ..., N .
Recall that ∆x = xmax

jmax
, ∆z = zmax

kmax
and ∆τ = T

N
. The stepwidth parameter and time step

are chosen such that
∆x = β1δ, ∆z = β2δ and ∆τ = β3δ, (4.3)

where β1, β2 and β3 are positive constants independent of the small parameter δ. These
assumptions on ∆x, ∆z and ∆τ are necessary in order to establish pointwise consistency of
the numerical scheme. In addition, the l∞-stability property and monotonicity property of
the numerical scheme (4.2) can be established. The formal definitions of these properties of
discretized schemes are stated in Definitions 5.1-5.3 in Forsyth and Labahn (2007) (also see
Appendix B).

Proposition 1 The numerical scheme (4.2) observes the properties of consistency (point-
wise), monotonicity and l∞-stability. Provided that the strong comparison property holds, the
numerical solution to scheme (4.2) converges to the viscosity solution of the HJB formulation
(4.1).

The proof of Proposition 1 relies on some technical results in Barles (1997), the details of
which are relegated to Appendix B.

Numerical implementation of policy iteration
The numerical scheme (4.2) is non-linear and one has to search for the optimal control
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variables un+1
j,k

∗
and An+1

j,k

∗
as part of solution procedure. Following Huang et al. (2010), we

derive the appropriate policy iteration scheme that solves scheme (4.2) through an iterative
search for un+1

j,k

∗
and An+1

j,k

∗
. Noting that the boundary values V n+1

j,kmax
at k = kmax are known,

we proceed to solve for V n+1
j,k through marching backward in k, k = kmax − 1, ..., 1. For a

fixed value of k, we solve recursively for the optimal control variables, where each iteration
requires numerical solution of a system of jmax − 1 algebraic equations.

First, we rewrite scheme (4.2) as follows:

sup
un+1

j,k
,An+1

j,k

{aj∆τV n+1
j+1,k − [1 + (aj + bj + cn+1

j,k )∆τ ]V n+1
j,k

+ bj∆τV n+1
j−1,k + hn+1

j,k } = 0, j = 1, 2, ..., jmax − 1, (4.4)

where the known quantities are lumped into hn+1
j,k defined as

hn+1
j,k = V n

j,k + ∆τ (dn+1
j,k V n+1

j,k + en+1
j,k ).

The solution to the formulation in eq. (4.4) is given by solving the following system of
algebraic equations:

−aj∆τV n+1
j,k + [1 + (aj + bj + cn+1

j,k )∆τ ]V n+1
j,k − bj∆τV n+1

j,k = hn+1
j,k , j = 1, 2, ..., jmax − 1. (4.5)

Here, the coefficients aj, bj, cn+1
j,k , hn+1

j,k and the grid value function V n+1
j,k are evaluated at the

optimal control variables un+1
j,k

∗
and An+1

j,k

∗
, which are determined by

(un+1
j,k

∗
, An+1

j,k

∗
)

= argmax
u∈Q,A∈{0,1}

{aj∆τV n+1
j+1,k − [1 + (aj + bj + cn+1

j,k )∆τ ]V n+1
j,k + bj∆τV n+1

j−1,k + hn+1
j,k }. (4.6)

We define the vector of grid value function values as follows:

Vn+1
k = (V n+1

0,k V n+1
1,k ... V n+1

jmax ,k)
T , k = 0, 1, ..., kmax − 1.

Also, we define the tridiagonal matrix Bk of dimension (jmax+1)×(jmax+1), k = 0, 1, ..., kmax−
1, whose entries are given by

[Bk]l,m =































1 (l, m) = (jmax, jmax)

−bl∆τ m = l − 1, l = 1, ..., jmax − 1

−al∆τ m = l + 1, l = 0, 1, ..., jmax − 1

1 + (al + bl + cn+1
l,k )∆τ m = l, l = 0, 1, ..., jmax − 1

0 otherwise

Lastly, we define the column vector hn+1
j,k , k = 0, 1, ..., kmax − 1, by

hn+1
k = (hn+1

0,k hn+1
1,k ... hn+1

jmax−1,k C1(zk, τn+1)xmax + C2(zk, τn+1))
T .
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In terms of Vn+1
k , Bk, hn+1

k , scheme (4.4) can be expressed into the following matrix form:

sup
un+1

j,k
,An+1

j,k

{−BkV
n+1
k + hn+1

k } = 0, k = 0, 1, ..., kmax − 1. (4.7)

The tridiagonal matrix Bk can be easily checked to be a M-matrix. In the policy itera-
tion scheme presented below, the M-matrix property provides a sufficient condition for the
convergence of the policy iteration procedure (Huang et al., 2010).

Let (Vn+1
k )i denote the ith iterate of the vector Vn+1

k . The sequence of steps in the policy
iteration are outlined as follows:

1. Set the initial guess of Vn+1
k to be (Vn+1

k )0 = Vn
k .

2. Assuming that the value of (Vn+1
k )i is known, the ith iterate of the pair of optimal

control variables (un+1
j,k , An+1

j,k )i is determined by

(un+1
j,k , An+1

j,k )i = argmax
u∈Q,A∈{0,1}

{(−Bk(V
n+1
k )i + hn+1

k )j},

where (−Bk(V
n+1
k )i+hn+1

k )j denotes the jth-component of the vector, j = 1, 2, ..., jmax−
1.

3. Solve the following linear system of equations:

−(Bk)
i(Vn+1

k )i+1 + (hn+1
k )i = 0,

where
(Bk)

i = Bk|(un+1
j,k

,An+1
j,k

)i and (hn+1
k )i = hn+1

k |(un+1
j,k

,An+1
j,k

)i.

A well defined iteration termination criterion should be imposed. For example, the
policy iteration is terminated when

max
j

(V n+1
j,k )i+1 − (V n+1

j,k )i

(V n+1
j,k )i+1

< tolerance value.

Convergence of the policy iteration
It is important to ensure that the iterates of the value function under the policy iteration
procedure converge to the solution of the discretized scheme (4.4). As the discretization
observes the positive coefficients condition, one can establish the following proposition.

Proposition 2 The iterates (Vn+1
k )i, i = 1, 2, ..., of the iteration algorithm converge to the

unique solution of eq. (4.7) for any initial guess (Vn+1
k )0.

The proof of Proposition 2 is presented in Appendix C. By following similar theoretical
arguments in Huang et al. (2010), the iterates of the policy iteration algorithm converge to
the discretized scheme (4.2).
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Numerical tests on convergence of the numerical algorithm
There are two major sources of errors, one is the discretization error arising from the dis-
cretization of the differential terms and the other is the error arising from approximating
the auxiliary conditions via numerical boundary conditions. First, we performed numerical
calculations to test for first order temporal accuracy of the algorithm. In Table 1, we list
the numerical solution values of the value function evaluated at x = 5, z = 5 and T = 1
with varying values of number of time steps. The parameter values used in our calculations
were chosen to be: r = 0.05, µ = 0.01, σ = 0.3, a = b = 1, ε = 10−8, T = 1, xmax = 10
and zmax = 10 and c(u) = 0.01 + u2

2
. It is seen from Table 1 that the ratio of difference in

numerical solutions is close to 2 when the number of time steps is doubled, indicating that
first order termporal accuracy of the numerical algorithm is achieved. Next, we examine
the impact of the choices of the upper boundaries, xmax and zmax, in the discretized domain
on the accuracy of the numerical solution. In Table 2, we list the numerical solution of
V (50, 50, 1) with various choices of xmax and zmax. In our numerical calculations, we use
the same set of model parameters as those for Table 1. It is seen from Table 2 that the
percentage difference in numerical solutions is less than 0.005% when the values for xmax

and zmax have been chosen to be about 200, indicating that the numerical errors caused by
finite truncation of the computational domain is insignificant with these choices of values for
xmax and zmax.

5 Analysis of the optimal R&D effort

In this section, we would like to explore how the firm adopts its optimal R&D effort in
response to various market conditions and economic scenarios by performing the sensitivity
analysis of the optimal control u∗ with respect to different model parameters, like time
to expiry, knowledge stock level, volatility of the stochastic state variable, etc. Also, we
explore the optimal abandonment policy adopted by the firm by computing the optimal
abandonment boundary that separates the continuation region and abandonment region.
Unless otherwise stated, the following set of parameter values are used in generating the
numerical plots: r = 0.05, µ = 0.01, σ = 0.3, a = b = 1, ε = 10−8, T = 1, c(u) = 10 + u2

2
,

Q = [0, 10].
First, we explore the dependence of u∗ on time to expiry τ . In Figure 1, we show the

numerical plot of u∗ against τ at the fixed value of x = 10. It is shown in the figure
that when τ < τ ∗ (our calculations give τ ∗ = 0.1), u∗ assumes zero value indicating that
the firm chooses to abandon the project (zero R&D effort). This agrees with the financial
intuition that as the calendar time is approaching to the expiration date of the technology,
the potential profit becomes negligibly small while there is a fixed cost to keep the project
if not abandoned. As a result, it is optimal to abandon the project. When τ > τ ∗, the firm
sets a higher optimal R&D effort when the calendar time is further from the expiration date.
This is because higher expected profit W (x, τ ) is generated from the project as τ increases.
On the other hand, since W (x, τ ) is bounded above by x

r−µ
for a fixed value of x, so u∗ tends

to some asymptotic level as τ increases to some sufficiently high value (u∗ → 1.96 as shown

12



in Figure 1).
Next, we explore the dependence of u∗ on the current value of the state variable x with

varying values of knowledge stock z. It is shown in Figure 2 that u∗ increases almost linearly
with respect to x until up to the level that is capped by the maximum value of allowable
R&D expenditure (in our calculations, we set û∗ = supQ = 10). We also show various
curves of u∗ against x at varying values of the knowledge stock z. For a given fixed value of
x, when z assumes a lower value, the firm increases the control u∗ to speed up R&D in order
to increase the expected value of profit from the R&D project.

Alternatively, we show the dependence of u∗ on z with two different choices of cost
functions and varying values of x. In Figure 3a, we plot u∗ against z with the cost function

c(u) = 10 +
u2

2
. It is observed that that u∗ decreases almost linearly as the knowledge stock z

increases. When z stays above some threshold value, u∗ becomes identically zero indicating
that the firm chooses optimally to stop putting any extra R&D effort (though the R&D
project is not abandoned). Our calculations shows that (i) at x = 18.75, u∗ = 0 when
z ≥ 20.31, (ii) at x = 31.25, u∗ = 0 when z ≥ 34.38. This is coined the “pure knowledge
effect” phenomenon by Doraszelski (2003), where the firm chooses optimally to reduce R&D
effort as the knowledge stock increases. Similarly, we plot u∗ against z with the cost function

c(u) = 10 +
u1.5

2
in Figure 3b. Here, the elasticity of the cost function is 1.5 (exponent of

the power function in the cost function). We observe that the dependence of u∗ on z no
longer exhibits linear decline, as what has been observed under the quadratic cost function.
Instead, the optimal control is seen to decrease and tend to some asymptotic level with
increasing knowledge stock.

We also investigate how u∗ is affected by market uncertainty as proxied by the volatility
parameter σ of the stochastic state variable xt. We modify the cost function to be c(u) =

10 +
u2

2
and the set of admissible controls to be Q = [0, 10] in the numerical calculations

that generate Figure 4. The optimal control is seen to decrease with increasing volatility,
indicating that the firm chooses to expend less in R&D effort under a higher level of market
uncertainty. The impact of σ on u∗ to be almost insignificant as revealed by the curves in
Figure 4. This result is expected since saving of the maintenance cost of R&D from an early
abandonment is not sensitive to volatility of the profit flow. In other word, the optimal
abandonment policy is almost unrelated to market uncertainty as characterized by volatility.

Lastly, we investigate the optimal stopping rule of abandonment by plotting the optimal
abandonment threshold x∗ against time to expiry τ with varying values of fixed cost c0 in
the cost function c(u) = c0 + u2

2
. In the numerical calculations that generate the separating

boundary curve shown in Figure 5, we take the set of admissible control to be Q = [0, 10]
and z = 50. The optimal abandonment boundary separates the continuation region in the
above and the abandonment region below. When τ becomes smaller than some threshold
value, it becomes optimal for the firm to abandon the R&D project at any level of x. As a
result, x∗ becomes infinitely large in value. When the calendar time is sufficiently far from
the expiration of the technology, x∗ does not depend sensibly on τ . When the fixed cost
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c0 is higher, it is more likely for the firm to exercise the abandonment right at a higher
abandonment threshold x∗, so x∗ is expected to be an increasing function of c0. The plots
of x∗ against τ with c0 = 5, 10 and 20 in Figure 5 are seen to agree well with this economic
intuition.

6 Conclusion

We have developed a finite-time real option model with stochastic control that explores the
optimal strategy of R&D effort adopted by a firm engaging in R&D in the development
of an innovative product. Our R&D stochastic control model includes market uncertainty
and technological uncertainty, and the firm is allowed to adopt its optimal strategy of R&D
effort as control together with the right to abandon the R&D project. While most real
option models on R&D assume perpetuity for simplicity of analysis, we consider the more
realistic modeling where the new product is based on technologies that have a finite life
span. Also, we model the hazard rate of arrival to depend on the current R&D effort and
knowledge accumulation in the R&D process, so the hazard rate is non-memoryless. We
manage to present the HJB formulation of the stochastic control model in combination with
the linear complementarity formulation of the optimal stopping rule of abandonment. An
efficient finite difference algorithm coupled with policy iteration and penalty approximation
has been developed to solve for the optimal control strategy of R&D effort. Special attention
has been taken in the choice of discretization of the HJB equation so that convergence of
the numerical solution to the viscosity solution of the HJB equation is guaranteed.

We performed extensive numerical studies on the optimal control of R&D effort with
respect to market conditions and knowledge stock. We found that when the calendar time is
approaching the expiration date of the technologies, it is optimal for the firm to abandon the
R&D project at any level of the profit flow rate. Hence, for finite time horizon R&D models,
the right of abandonment is worthy. Taking the stochastic profit flow rate as a proxy of the
market conditions, the firm increases its R&D effort with an increasing level of profit flow
rate and decreasing volatility of the stochastic profit flow rate. Also, our model exhibits a
phenomenon similar to the “pure knowledge effect”, where the firm may choose optimally
to put off R&D effort when the knowledge stock reaches certain threshold value (though the
R&D project is kept in progress). This threshold value depends on the current level of the
stochastic profit flow rate.

As potential future works, one may consider extending the existing framework of stochas-
tic control R&D model with knowledge stock to R&D race between two competing firms.
Also, we may include the spillover effects of knowledge accumulation from one firm to its
rival. Under a two-firm R&D race model, one has to analyze various types of strategic equi-
libriums to be adopted by the two firms and the associated first-mover and second-mover
advantages.
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APPENDICES

A. Derivation of the linear asymptotic boundary condition

When x → ∞, we have u = û∗ and the abandonment right becomes worthless. The governing
equation (3.2) reduces to

∂V

∂t
+

σ2

2
x2∂2V

∂x2
+ µx

∂V

∂x
+ u

∂V

∂z
− [h(t) + r]V = c(u)− h(t)W (x, t).
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Substituting V (x, z, t) = C1(z, t)x + C2(z, t) into the above differential equation and using
τ = T − t as the temporal variable, we obtain the following pair of differential equations for
C1(z, τ ) and C2(z, τ )

∂C1

∂τ
− û∗∂C1

∂z
= −(aû∗ + bz + r − µ)C1 + (aû∗ + bz)

1 − e−(r−µ)τ

r − µ
,

∂C2

∂τ
− û∗∂C2

∂z
= −(aû∗ + bz + r)C2 − c(û∗),

with terminal conditions: C1(z, 0) = C2(z, 0) = 0. The general solution of C1 and C2 is
found to be

C1(z, τ ) = F1(z, τ )

∫ τ

0

1 − e−(r−µ)s

r − µ

aû∗ + bv + bû∗s

F1(z, s)
ds,

C2(z, τ ) = −F2(z, τ )

∫ τ

0

c(û∗)

F2(z, s)
ds,

where

F1(z, s) = exp

(
∫

[aû∗ + b(v − û∗s) + r − µ] ds

)

,

F2(z, s) = exp

(
∫

[aû∗ + b(v − û∗s) + r] ds

)

,

v = z + û∗τ.

One can obtain the analytic expressions shown in eqs. (3.4a,b) by performing the integration
procedures at relative ease, thanks to the exponential functional forms of F1(z, s) and F2(z, s)
and the linear functions in the respective numerator of the integrand functions.

B. Proof of Proposition 1

To ensure the convergence of the numerical scheme (4.2) to the viscosity solution of the HJB
formulation (4.1), it suffices to show that the numerical scheme satisfies the following three
properties: consistency (pointwise), monotonicity and l∞-stability.

1. Consistency
The numerical scheme (4.2) is said to be consistent if for any smooth test function
V (x, z, τ ) having bounded partial derivatives of all orders, we have

lim
δ→0

|F (V ) − G(•)| = 0.
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Consider

|F (V (xj, zk, τn+1)) −Gn+1
j,k |

≤ |∂V

∂τ
(xj, zk, τn+1) −

V n+1
j,k − V n

j,k

∆τ
|

+ sup
u∈Q,A∈{0,1}

|σ
2

2
x2

j

∂2V

∂x2
(xj, zk, τn+1) + µxj

∂V

∂x
(xj, zk, τn+1)

+ u
∂V

∂z
(xj, zk, τn+1) − [h(τn+1) + r]V (xj, zk, τn+1)

− A

ε
V (xj, zk, τn+1) + h(τn+1)W (xj, τn+1) − c(u)

− [ajV
n+1
j+1,k − (aj + bj + cn+1

j,k )V n+1
j,k + bjV

n+1
j−1,k + dn+1

j,k V n+1
j,k+1 + en+1

j,k ]|
= O(∆τ ) + O(∆x) + O(∆z) = O(δ).

The above order estimates are resulted from the discretization of the differential terms
that observes at least first order accuracy and the last equality is due to the choice of
the stepwidth parameter and time step as dictated by eq. (4.3). We then have

lim
δ→0

|F (V ) − G(•)| = 0.

2. Monotonicity
The numerical scheme (4.2) is said to be monotone if

Gn+1
j,k (V n+1

j,k ,
{

Y n+1
a,b

}

(a,b) 6=(j,k)
, Y n

j,k) ≤ Gn+1
j,k (V n+1

j,k ,
{

Xn+1
a,b

}

(a,b) 6=(j,k)
, Xn

j,k)

where Y n+1
j,k ≥ Xn+1

j,k , valid for any (j, k). Forsyth and Labahn (2007) provide a nice
financial interpretation of this monotonicity condition as a discrete arbitrage inequality.
Intuitively, the value function at a node cannot decrease in value if the value function at
any neighboring node increases in value. To establish the monotone property, suppose
Y n+1

j,k ≥ Xn+1
j,k for any j, k and n, and observe that aj, bj and dn+1

j,k are non-negative
coefficients, we have

Gn+1
j,k (V n+1

j,k ,
{

Y n+1
a,b

}

(a,b) 6=(j,k)
, Y n

j,k) − Gn+1
j,k (V n+1

j,k ,
{

Xn+1
a,b

}

(a,b) 6=(j,k)
, Xn

j,k)

= − { sup
un+1

j,k
|Y ∈Q,An+1

j,k
|Y ∈{0,1}

{

ajY
n+1
j+1,k + bjY

n+1
j−1,k − (aj + bj + cn+1

j,k )V n+1
j,k + dn+1

j,k Y n+1
j,k+1 + en+1

j,k

}

− sup
un+1

j,k
|X∈Q,An+1

j,k
|X∈{0,1}

{

ajX
n+1
j+1,k + bjX

n+1
j−1,k − (aj + bj + cn+1

j,k )V n+1
j,k + dn+1

j,k Xn+1
j,k+1 + en+1

j,k

}

}

≤ − sup
un+1

j,k
∈Q,An+1

j,k
∈{0,1}

{

aj

(

Y n+1
j+1,k − Xn+1

j+1,k

)

+ bj

(

Y n+1
j−1,k −Xn+1

j−1,k

)

+ dn+1
j,k

(

Y n+1
j,k+1 − Xn+1

j,k+1

)}

≤ 0.

This gives the desired monotone property of the numerical scheme. As a remark, the
first inequality is deduced from an inequality established in Appendix B of Forsyth
and Labahn (2007).
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3. l∞-stability
The numerical scheme (4.2) is said to be l∞-stable if

||V n+1||∞ ≤ C

for 0 ≤ n ≤ N , T = N4τ , 4τ → 0, 4x → 0 and 4z → 0, where ||V n+1||∞ =
max

j,k
{|V n+1

j,k |}, and C is independent of 4x, 4z and 4τ . First, we note that max
j,k

{|V n+1
j,k |}

can be attained at a boundary node or an interior node at the time level τ = (n+1)4τ .
Suppose max

j,k
{|V n+1

j,k |} is attained at j = jmax, then

||V n+1||∞ = max
k

{|C1(zk, τn+1)xmax + C2(zk, τn+1)|} ≤ Mx

where
Mx = max

z,τ
|C1(z, τ )xmax + C2(z, τ )|,

a quantity that is independent of ∆x, ∆z and ∆τ . Similarly, suppose max
j,k

{|V n+1
j,k |} is

attained at k = kmax, then

||V n+1||∞ ≤ Mz = max
x,τ

|W (x, τ )|,

which is also independent of ∆x, ∆z and ∆τ . Lastly, suppose max
j,k

{|V n+1
j,k |} is attained

at an interior node (j, k, n + 1), we have

||V n+1||∞ = V n
j,k + 4τ sup

An+1
j,k

∈{0,1},un+1
j,k

∈Q

{fn+1
j,k (An+1

j,k , un+1
j,k )}

= V n
j,k + 4τ fn+1

j,k (An+1
j,k

∗
, un+1

j,k

∗
),

where

fn+1
j,k = ajV

n+1
j+1,k − (aj + bj + cn+1

j,k )V n+1
j,k + bjV

n+1
j−1,k + dn+1

j,k V n+1
j,k+1 + en+1

j,k ,

and An+1
j,k

∗
and un+1

j,k

∗
denote the optimal control variables that maximize fn+1

j,k . As-

suming that all quantities in fn+1
j,k are now evaluated at An+1

j,k

∗
and un+1

j,k

∗
, and taking

V n+1
j,k as ||V n+1||∞, we rearrange the terms in the above equation as follows:

[1 + (aj + bj + cn+1
j,k )4τ ]||V n+1||∞

= 4τ (ajV
n+1

j+1,k + bjV
n+1
j−1,k + dn+1

j,k V n+1
j,k+1 + en+1

j,k ) + V n
j,k.

For notational simplicity, we have suppressed the representation of the dependence on
An+1

j,k

∗
and un+1

j,k

∗
of the various terms in fn+1

j,k . Let Me = max
j,k,n

|en
j,k|. We then take
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the absolute value of the quantities on both sides of the above equation and apply the
triangle inequality. This gives

|1 + (aj + bj + cn+1
j,k )4τ ||V n+1||∞

≤ 4τ (aj|V n+1
j+1,k| + bj|V n+1

j−1,k| + dn+1
j,k |V n+1

j,k+1|) + |V n
j,k| + |en+1

j,k |4τ

≤ 4τ (aj||V n+1||∞ + bj||V n+1||∞ + dn+1
j,k ||V n+1||∞) + ||V n||∞ + Me4τ .

Furthermore, by observing the non-negativity of aj,bj,c
n+1
j,k ,dn+1

j,k , we have

1 + (aj + bj + cn+1
j,k )4τ ||V n+1||∞

≤ 4τ (aj + bj + dn+1
j,k )||V n+1||∞ + ||V n||∞ + Me4τ .

Rearranging the terms, we obtain

[(1 + (cn+1
j,k − dn+1

j,k )4τ ]||V n+1||∞ ≤ ||V n||∞ + Me4τ.

Thanks to cn+1
j,k ≥ dn+1

j,k , we can simplify the inequality as follows:

||V n+1||∞ ≤ [1 + (cn+1
j,k − dn+1

j,k )4τ ]||V n+1||∞ ≤ ||V n||∞ + Me4τ.

Combining the various possibilities that max
j,k

{V n+1
j,k } can be attained at an interior

node or a boundary node, we deduce that

||V n+1||∞ ≤ max{||V n||∞ + Me4τ, Mx, Mz}.

Applying the above inequality inductively until n = 0 and observing ||V 0||∞ = 0, we
finally obtain

||V n+1||∞ ≤ max{Mz, Mx} + MeT .

Hence, the l∞-stability property of the numerical scheme is established.

C. Proof of Proposition 2

First, we would like to show that Bk is a M-matrix for any u ∈ Q and A ∈ {0, 1}. Note that
aj, bj, cn+1

j,k are all non-negative for any control u and A, so Bk has positive diagonal entries
and non-positive off-diagonal entries. On the other hand, we have

|1 + (aj + bj + cn+1
j,k )∆τ | > | − aj∆τ | + | − bj∆τ |,

implying that Bk is diagonally dominant. Hence, Bk is a M-matrix. Besides, the property
on boundedness of the matrix norm of B−1

k : ||B−1
k ||∞ ≤ 1, is also useful in the proof of the

proposition. This matrix norm property can be established via some technical calculations,
the details can be found in Leung (2011).
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The formal proof starts with the proof of convergence of the iterates (Vn+1
k )i. Recall that

the ith iterate (Vn+1
k )i is obtained by solving the algebraic system of equations:

(Bk)
i−1(Vn+1

k )i = (hn+1
k )i−1.

The boundedness of (Vn+1
k )i is easily seen since

||(Vn+1
k )i||∞ = ||[(Bk)

i−1]−1(hn+1
k )i−1||∞ ≤ ||(hn+1

k )i−1||∞ ≤ sup
u,A

{||hn+1
k ||∞} < ∞,

by virtue of the matrix norm property: ||B−1
k ||∞ ≤ 1. We then show the monotonicity

property of the iterates, where
(Vn+1

k )i+1 ≥ (Vn+1
k )i.

We consider

(Bk)
i−1

[

(Vn+1
k )i+1 − (Vn+1

k )i
]

= (Bk)
i−1(Vn+1

k )i+1 − (hn+1
k )i−1 − (Bk)

i−1(Vn+1
k )i + (hn+1

k )i−1

= − [−(Bk)
i−1(Vn+1

k )i+1 + (hn+1
k )i−1]

≥− sup
u,A

{−Bk(V
n+1
k )i+1 + hn+1

k }

= − [−(Bk)
i(Vn+1

k )i+1 + (hn+1
k )i] = 0.

Since (Bk)
i−1 is a M-matrix, so [(Bk)

i−1]−1 ≥ 0. We can then conclude that

(Vn+1
k )i+1 ≥ (Vn+1

k )i.

Since a bounded monotonic sequence converges, so does the iterates (Vn+1
k )i. The conver-

gence of the iterates is independent of the value of the initial iterate. We write the limit of
the iterates as

Vn+1
k

∗
= lim

i→∞
(Vn+1

k )i.

Finally, we would like to show that Vn+1
k

∗
is a solution to eq. (4.7). Since Bk is bounded for

all possible controls (u, A) ∈ Q × {0, 1}, it is seen that

lim
i→∞

(Bk)
i[(Vn+1

k )i+1 − (Vn+1
k )i]

= lim
i→∞

[−(Bk)
i(Vn+1

k )i + (hn+1
k )i]

= lim
i→∞

sup
u,A

{−Bk(V
n+1
k )i + hn+1

k }

=sup
u,A

{−BkV
n+1
k

∗
+ hn+1

k } = 0.

Hence, the limit of the iterates satisfies eq. (4.7).
To complete the proof, it is also necessary to show that convergent sequences of iterates

with different initial starting iterates do converge to the same limit. It suffices to show that
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the solution of eq. (4.7) is unique. Suppose there are two solution tuples (V̂n+1
k , û, Â) and

(Ṽn+1
k , ũ, Ã) such that

−Bk|(û,Â)V̂
n+1
k + hn+1

k |û,Â = 0 where (û, Â) = argmax
u∈Q,A∈{0,1}

{−BkV̂
n+1
k + hn+1

k }

and

−Bk|(ũ,Ã)Ṽ
n+1
k + hn+1

k |ũ,Ã = 0 where (ũ, Ã) = argmax
u∈Q,A∈{0,1}

{−BkṼ
n+1
k + hn+1

k }.

Observe that
Bk|(û,Â)(V̂

n+1
k − Ṽn+1

k ) = −Bk|(û,Â)Ṽ
n+1
k + hn+1

k |(û,Â),

so we obtain
V̂n+1

k − Ṽn+1
k = (Bk|(û,Â))

−1(−Bk|(û,Â)Ṽ
n+1
k + hn+1

k )|(û,Â).

Since (û, Â) may not be the pair of optimal control variables for Ṽn+1
k , we deduce that

−Bk|(û,Â)Ṽ
n+1
k + hn+1

k |(û,Â) ≤ sup
u,A

{−BkṼ
n+1
k + hn+1

k } = 0.

Observing that B−1
k ≥ 0 (by virtue of the M-matrix property of Bk) and together with the

above inequality, we obtain
V̂n+1

k − Ṽn+1
k ≤ 0.

The above arguments remain valid when we interchange the role of V̂n+1
k and Ṽn+1

k ; thus,
we also obtain

Ṽn+1
k − V̂n+1

k ≥ 0.

Putting these results together, we obtain V̂n+1
k = Ṽn+1

k . Therefore, we conclude that the
solution to eq. (4.7) is unique.
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number of numerical value difference in ratio of
time steps V (5, 5, 1) numerical solutions difference

32 2.5688
64 2.1951 0.3737
128 2.0060 0.1891 1.9762
256 1.9107 0.0951 1.9843
512 1.8628 0.0479 1.9895
1024 1.8389 0.0239 2.0042

Table 1: Results of numerical tests that were performed to examine the convergence rate of
the numerical algorithm. Linear rate of convergence is confirmed since the ratio of difference
in numerical solutions is close to 2 when the number of time steps is doubled.

xmax zmax numerical value difference in
V (50, 50, 1) numerical solutions

100 100 48.3371
200 200 48.3351 0.0020
400 400 48.3338 0.0013
800 800 48.3329 0.0009

Table 2: Results of numerical tests that were performed to examine the impact of the choices
of the upper boundaries, xmax and zmax, on accuracy of the numerical solutions. When xmax

and zmax are chosen to be about 200, the numerical errors caused by finite truncation of the
computational domain is insignificant.
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Figure 1: Plot of optimal control u∗ against time to expiry τ . When τ < τ ∗, the firm
optimally chooses to abandon its R&D at any level of the stochastic state variable. When
τ ≥ τ ∗, the optimal control u∗ increases with increasing τ and tends to some asymptotic
level when τ is sufficiently large.

Figure 2: Plot of optimal control u∗ against current value of the state variable x with varying
values of knowledge stock z. One observes that u∗ increases almost linearly with respect to
x until up to the level û∗ = sup Q = 10. On the other hand, the firm optimally increases the
R&D effort when the knowledge stock z is lower.
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Figure 3a: Plot of optimal control u∗ against knowledge stock z with cost function

c(u) = 10 +
u2

2
. The optimal control is seen to decrease almost linearly as the knowledge

stock increases. When z is greater than some threshold value (z∗ = 20.31 for x = 18.75 and
z∗∗ = 34.38 for x = 31.25), the optimal control becomes identically zero indicating that the
firm chooses optimally not to put any extra R&D effort (though the R&D project is not
abandoned).
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Figure 3b: Plot of optimal control u∗ against knowledge stock z with cost function

c(u) = 10 +
u1.5

2
. One observes that the optimal control decreases and tends to some asymp-

totic level with increasing knowledge stock.
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Figure 4: Plot of optimal control u∗ against x with varying values of volatility σ. The optimal
control is seen to decrease with increasing volatility, indicating that the firm tends to slow
down its R&D effort when subject to a higher level of market uncertainty.
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Figure 5: Plot of the optimal abandonment threshold x∗ against τ with varying values of the

fixed cost c0 in the cost function c(u) = c0 +
u2

2
. At a given value of τ , the firm optimally

chooses to continue the R&D project when the stochastic state variable xt assumes a value
higher than x∗ and abandon the project if otherwise. In the (τ, x)-plane, the region above
(below) the optimal abandonment boundary represents the continuation (abandonment)
region. The abandonment threshold is seen to be an increasing function of the fixed cost c0.
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