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Abstract
This paper examines the impact of Knightian uncertainty upon optimal climate policy
through the prism of a continuous-time real option modelling framework. We analyt-
ically determine optimal intertemporal climate policies under ambiguous assessments
of climate damages. Additionally, numerical simulations are provided to illustrate the
properties of the model. The results indicate that increasing Knightian uncertainty ac-
celerates climate policy, i.e. an ambiguity-averse policy maker become more reluctant
to postpone the timing of climate policies into the future. However, we find that the
size of this effect is rather small, which indicates that Knightian uncertainty is no "carte
blanche" for extreme policy activism.
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1 Introduction

The future dynamics of greenhouse gas emissions, and their implications for global climate

conditions in the future, will be shaped by the way in which policy makers respond to cli-

mate projections, react to model uncertainty, and derive resultant mitigation and adaptation

decisions. However, assessments of the future impacts of climate change, which shall provide

the basis of a climate policy decision, are far from being conclusive. A considerable lack of

scientific understanding and uncertainties about the future economic development lead to

enormous ambiguities in the projections. Hence, the question of how to design an optimal

climate policy cannot be answered in an off-hand way. It could be reasonable to wait for

new information to arrive before taking action. On the contrary, the peril of serious and irre-

versible climate damages may necessitate to take instantaneous and preventive action. This

approach to the climate problem resembles the precautionary principle, which is for example

endorsed by the European Union and the Rio Declaration on Environment and Development.

Principle 15 in the 1992 Rio Declaration on Environment and Development states that due to

threats of serious and irreversible damage, "lack of full scientific certainty shall not be used

as a reason for postponing cost-effective measures to prevent environmental degradation."

To provide an economic foundation for this discussion, analysing the rational decision under

fundamental uncertainties has gained importance over the last years. The lack of knowledge

implies that the decision maker is not capable of assigning specific probabilities to events.

Hence, the assumption of one probability measure, which is usually referred to as risk, falls

short to capture the involved ambiguities. Due to the variety of possible scenarios, uncer-

tainty is better described by a set of different probability measures. This concept, which is

called Knightian uncertainty or ambiguity, captures uncertainty of the underlying probabil-

ity measure, while risk means that uncertainty is only implied by the volatility of a known

distribution. Examining how people react to situations of these different notions of uncer-

tainty, Ellsberg (1961) provides experimental evidence that people usually prefer situations

where probabilities are known.1 Accordingly, the decision maker is usually assumed to be

ambiguity-averse. In this context, Gilboa & Schmeidler (1989) give the axiomatic foundation

that the set of probability distributions reduces to the behavioral bias to extreme pessimism,

i.e. the decision maker maximises welfare of the minimum/worst scenario. Recently, this

concept has been transfered to analyse the decision when to adopt an environmental policy.

Asano (2010) examines the impacts of Knightian uncertainty referring to future economic

developments that affect the social costs of a pollutant, e.g. the innovation of a technol-
1Before, it was widely accepted that a rational decision maker is considered to be indifferent between the

situation where the probability is clear-cut and where it is vague, as long as the mean probability is the
same for both cases, see Savage (1954). Subsequently, the so-called Ellsberg paradox has been examined
and verified for alternative situations, see for example Becker & Brownson (1964), Camerer & Weber (1992),
Halevy (2007), Hogarth & Kunreuther (1985), Sarin & Weber (1993) and Smith (1969). Neuro-empirical
evidence has been provided by Hsu et al. (2005) by proving that certain areas in the brain respond differently
to situations of risk and ambiguity.
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ogy could lower the costs of a climate policy adoption. Vardas & Xepapadeas (2010) apply

the Knightian uncertainty concept to the evolution of species biomass to assess ecosystem

management strategies. These studies come to the same conclusion that the policy is to be

adopted earlier than in a situation where uncertainty is described by risk. As pointed out by

the authors, this approach can be considered to be a formal way to model the precautionary

principle.

This paper reexamines this conclusion by providing a different view onto the effects of Knigh-

tian uncertainty. Different to the aforementioned papers, we direct the attention to the am-

biguous assessments of the future damage costs. A review of the existing estimates reveals

enormous uncertainties, see Stern (2007). Apart from different appraisals of vulnerabili-

ties, impacts of extreme weather events and catastrophes are often neglected and underlying

assumptions about the future economies’ capability to adapt are highly controversial. High-

lighting the ambiguity of these assessments, the three main benchmark studies by Mendelsohn

et al. (2000), Nordhaus & Boyer (2000) and Tol (2002) vary between 0 and 3 percent of GDP

losses for a 3◦C warming. Accordingly, we firstly develop a formal decision model where an

ambiguity-averse social planner faces Knightian uncertainty in the future climate damage

costs. We utilise numerical simulations to examine the timing of the policy adoption and to

compare it to the situation where only risk exits. Secondly, we contribute to the literature

by assessing the size of the effects caused by Knightian uncertainty. For this, the effects of

marginal changes of the other crucial parameter values are chosen to serve as the basis for

comparison. Is Knightian uncertainty as important to the optimal timing as the calibration

of the discount rate and the abatement costs or does the ubiquitous parameter uncertainty

swamp the effects by Knightian uncertainty? This kind of analysis contributes to a better

understanding of decision making under ambiguity.

The model we develop is based on recent theoretical analyses of decisions under uncertainty,

which have highlighted the effects of irreversibility in generating “real options”. In these

models, the interaction of time-varying uncertainty and irreversibility leads to a range of

inaction where policy makers refer to “wait and see” rather than undertaking a costly action

with uncertain consequences. We employ this recent literature and interpret climate policies

as consisting of a portfolio of options. The general idea underpinning the view that climate

policies are option-rights is that climate policy can be seen as analogous in its nature to

the purchase of a financial call option, where the investor pays a premium price in order

to get the right to buy an asset for some time at a predetermined price (exercise price),

and eventually different from the spot market price of the asset. In this analogy, the policy

maker, through her climate policy decision, pays a price which gives her the right to use a

mitigation strategy, now or in the future, in return for lower damages. Taking into account

this options-based approach, the calculus of suitability cannot be done simply applying the

net present value rule, but rather has to consider the following three salient characteristics

of the environmental policy decision: (i) there is uncertainty about future payoffs from cli-
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mate policies; (ii) waiting allows policy makers to gather new information on the uncertain

future; and (iii) climate policies are at least partially irreversible. These characteristics are

encapsulated in the concept of real option models.2 This strand of literature now constitutes

a significant branch of the climate economics literature. A limited, but growing, strand of

literature – particularly in mathematical economics – has extended the real options approach

to analyse the interplay of irreversibility and uncertainty under Knightian uncertainty, see

for example Nishimura & Ozaki (2007) and Trojanowska & Kort (2010). We transfer these

ideas by expanding the paper by Pindyck (2009b) on uncertain outcomes and climate change

policy.

The remainder of the paper is organised as follows. In Section 2, the comprehensive mod-

elling set-up is presented. The framework incorporates cross-discipline interactions in order

to derive dynamically optimal policy responses to Knightian uncertainty. Subsequently, in

Section 3 we illustrate the working of the model through numerical exercises and examine

the sensitivity of the main results with respect to key parameters. The paper concludes in

Section 4 with a brief summary and suggestions for further research. Omitted details of

several derivations are provided in appendices.

2 The Model

Over the last decades, climate models have been developed to an impressive level of complex-

ity. Over a similar period, there has been growing interest in the uncertainty of future climate

scenarios. Future climate projections are uncertain because both the initial conditions and

the computational representation of the known equations of motion of the natural system are

uncertain. To aid future climate policy decisions, accurate quantitative descriptions of the

uncertainty in climate outcomes under various possible policies and scenarios are needed.

Of course, the multidisciplinary nature of the field presents a challenge. This requires integrat-

ing different natural and social sciences modelling paradigms traditions in a unified decision

tool. Here, we have decided to extend the modelling framework of Pindyck (2009a,b) that

embodies, in a simplified way, all essential ingredients by allowing for real options under

Knightian uncertainty. The stochastic dynamic programming framework quantifies scientific

uncertainties to the extent possible, and explains the potential implications of Knightian un-

certainty for the outcomes of concern to the policy makers. It should be noted that the most

obvious challenge along the way is to minimise complexity so that the model setup under

complex uncertainty is still tractable.3

2Concise surveys of the real options literature are provided by Bertola (2010), Dixit & Pindyck (1994) and
Stokey (2009).

3The plethora of potentially significant contributions to overall atmospheric heat balance that are not
treated in the simple model used here includes changes in other well-mixed greenhouse gases, ozone, snow
albedo, cloud cover, solar irradiance, and aerosols. From this list, it should be clear that the objectives of the
present paper are limited ones. A more complete assessment of outcome probabilities would include detailed
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The model assumes that a forward looking social planner strives to find the optimal tim-

ing of a climate policy by maximizing the flow of consumption over time.4 She faces the

intergenerational trade-off problem that investments into a mitigation strategy, which sub-

stantially reduces emissions, force the present economy to abstain from consumption, but

avoid climate damages that would decrease the future consumption potential. Moreover, a

bad timing will certainly lead to one of the following two irreversibility effects. On the one

hand, investing too early in mitigation technologies could trigger enormous sunk costs that

are not recouped before long. On the other hand, waiting too long may cause irreversible

damages to ecological systems that are valuable to human health or the economy. However,

ubiquitous uncertainties in almost every component in the projections and especially in the

assessment of future climate damages render a well-informed decision about the timing al-

most impossible. Put differently, all plans depend decisively on the unknown sensitivity of

losses to climate change. Hence, particularly the uncertainties of the future climate damages

and their effects are focussed on in the following, whereas any other lack of knowledge is

assumed to be resolved for the sake of analytical tractability. Expressed mathematically, the

policy maker solves the following isoelastic objective function, which consists of the expected

net present value of future consumption levels:

W = E

 ∞∫
t=0

(L(Xt,∆Tt)Ct)1−δ

1− δ
e−rt dt

 ,(1)

where E[·] is the expectation operator and Ct is the aggregate consumption over time with

the initial value normalised to 1. In the simplest form, the level of consumption is assumed

to be equivalent to the level of GDP. The parameter δ ≥ 0 is the inverse of the intertemporal

elasticity of substitution and r is the pure rate of social time preference. The climate damages

are measured by L(Xt,∆Tt). This loss function is attached to the level of consumption, where

∆Tt describes scientifically estimated changes in temperature andXt is a (positive) stochastic

damage function parameter determining the sensitivity of losses to global warming.

Instead of trying to model climate impacts in any detail, we keep the problem analytically

simple by assuming that damages depend only on the temperature change, which is chosen as

a measure of climate change. To be precise, following Pindyck (2009a,b) we assume that the

damage from warming and the associated physical impacts of climate change as a fraction of

models of the past and future of each of these effects.
4In our model framework we treat the world as a single entity in the interest of brevity. The world

climate policy equilibrium can be constructed as a symmetric Nash equilibrium in mitigation strategies. The
equilibrium can be determined by simply looking at the single country policy which is defined ignoring the
other countries’ abatement policy decisions [Leahy (1993)]. Furthermore, the modelling approach assumes that
the social planner is benevolent. However, much discussion challenges this assumption. Climate policymakers,
the argument goes, avoid hard decision, they pander the electorate, partisan politics leads to gridlock, and
they do what is best for themselves. Discussing these flaws of policy decision making goes far beyond the
scope of our research.
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GDP is implied by the exponential loss function

(2) L (Xt,∆Tt) = e−Xt(∆Tt)2 ,

where 0 < L (Xt,∆Tt) ≤ 1, ∂L/∂ (∆Tt) ≤ 0 and ∂L/∂Xt ≤ 0. This yields GDP at time t

net of damage from warming in the order of L(Xt,∆Tt)GDPt, i.e. climate-induced damages

result in less GDP, and hence less consumption.5

Before we turn to the modelling of the uncertainty that is attached to Xt in equation (2),

we briefly introduce the other component in the loss function: the temperature increase

∆Tt. For this we adopt the commonly used climate sensitivity function in Weitzman (2009a)

and Pindyck (2009a,b). The single linear differential equation compresses all involved com-

plex physical processes by capturing climate forcings and feedbacks in a simplified manner.6

Hence, a direct link between the atmospheric greenhouse gas concentration Gt and the tem-

perature increase ∆Tt is obtained by

(3) d∆Tt = m1

(
ln (Gt/G0)

ln 2
−m2∆Tt

)
dt,

where G0 is the inherited pre-industrial baseline level of greenhouse gas, and m1 and m2 are

positive parameters. The first term in the bracket stands for the radiative forcing induced

by a doubling of the atmospheric greenhouse gases, i.e. Gt is set to equal 2G0. The second

term represents the net of all negative and positive feedbacks. A positive parameter for this

term thus rules out a runaway greenhouse effect. The parameter m1 describes the thermal

inertia or the effective capacity to absorb heat by the earth system, which is exemplified by

the oceanic heat uptake.

By defining H as the time horizon with ∆Tt = ∆TH at t = H and ∆Tt → 2∆TH as t→∞,

we obtain equations, which are convenient to use in the real options setting. The following

differential equations allow to derive the corresponding partial differential equation related

to the real options terms and thus to solve the optimal stopping problem in a straightforward

way:

(4) d∆Tt =
ln (2)

H
(2∆TH −∆Tt) dt,

5Due the scarcity of empirical information about the magnitude of the damages in question, the shape of
the damage function is somewhat arbitrary. Pindyck (2009b) has assumed the exponential function L(∆T) =
exp[−β(∆T2)], where β follows a gamma distribution. This implies that future damages are fully captured
by the probabilistic outcomes of a given distribution. This concept can be understood as risk. However, the
present uncertainty about β also comprises the choice of the probability distribution, which will be tackled
in this paper.

6Factors that influence the climate are distinguished between forcings and feedbacks. A forcing is under-
stood as a primary effect that changes directly the balance of incoming and outgoing energy in the earth-
atmosphere system. Emissions of aerosols and greenhouse gases or changes in the solar radiation are examples.
A secondary and indirect effect is described by a feedback that boosts (positive feedback) or dampens (neg-
ative feedback) a forcing. The blackbody radiation feedback exemplifies an important negative feedback,
whereas, for example, the ice-albedo feedback accelerates warming by decreasing the earth’s reflectivity.
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and

(5) ∆Tt = 2∆TH
(

1− e−
ln 2
H
t
)
,

where ln (2) /H denotes the adjustment speed of changes in temperature to the eventual

changes in temperature 2∆TH .7

Let us now focus on the other component in equation (2), which is the sensitivity of losses

to global warming. The standard real options approach emphasises the importance of uncer-

tainty in determining option value and timing of option exercise. However, the standard real

options approach rules out the situation where policy makers are unsure about the likelihoods

of future events. It typically adopts strong assumptions about policy makers’ beliefs and no

distinction between risk and uncertainty is made. The usual prescription for decision mak-

ing under risk then is to select an action that maximises expected utility. This is assumed

although the knowledge of climate dynamics is still far from conclusive.8 New modelling

techniques in natural science and greater computing power provide more details and finer

distinctions, but do not necessarily lead to more accuracy in the projections. In the more

realistic Knightian uncertainty scenario, policies therefore become more complex, as now the

policy makers carry a set of probability measures for future climate change and consequently

every policy measure is associated with an interval of expected costs. This implies that it

would be more appropriate to describe the process of Xt using a set of probability measures,

not just one measure such as a geometric Brownian motion with a drift term as often used in

real options.9 In other words, the Knightian version of the real options models differs from

the plain vanilla real options model by having an entire set of subjective probability distri-

butions. Modelling Knightian uncertainty is a non-trivial task in general. To incorporate a

situation where policy makers are unable to assign a precise probability to future alterna-

tives, we use the Knightian uncertainty modelling approach developed by Nishimura & Ozaki

(2007). In their comprehensive representation of Knightian uncertainty, unresolved processes

are represented by computationally efficient stochastic-dynamic schemes. We introduce their
7There is considerable a priori uncertainty in the probability and scale of climate change, but at least

there are historical time series data available to calibrate probability distributions for parameters important
in modelling climate sensitivity. On the other hand, based on current knowledge there is a large a priori
uncertainty concerning when dramatic technological breakthroughs might occur and how much impact they
will have, so allowing for such possibilities should increase the spread of outcomes for global carbon emissions
and their consequences.

8One has to admit that despite more observations, more sophisticated coupled climate models and sub-
stantial increases in computing power, climate projections have not narrowed appreciably over the last two
decades. Indeed, it has been speculated that foreseeable improvements in the understanding of the underlying
physical processes will probably not lead to large reductions in climate sensitivity uncertainty. See Roe &
Baker (2007).

9Alternatively, the imprecise probability concept in Reichert (1997) employs a set of probability measures
describing the uncertain model parameters. For example, the ambiguity involved in the estimation of the
global mean temperature change in the 21st century is analysed in Kriegler & Held (2005) by constructing
a belief function that is the lower envelope of the corresponding distributions. The model results in large
imprecisions of the estimates, highlighting the key role of uncertainties in climate projections. Apart from
deriving upper and lower bounds of the sets, Borsuk & Tomassini (2005) examine other representations of
the probability measures and demonstrate how to use them to describe climate change uncertainties.
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treatment of Knightian uncertainty below.

To formalise the concept, let (Bt)0≤t≤T be a standard Brownian motion on (Ω,FT , P ) that is

endowed with the standard filtration (Ft)0≤t≤T for (Bt). Consider the real-valued stochastic

process (Xt)0≤t≤T generated by the Brownian motion with drift α and standard deviation σ:

(6) dXt = αXtdt+ σXtdBt.

In equation (6) the particular probability measure P is regarded as capturing the true nature

of the underlying process.10 This, however, is highly unlikely, as this would imply that policy

makers are absolutely certain about the probability distribution that describes the future

development of (Xt)0≤t≤T . Unlike this standard case, Knightian uncertainty describes how

policy makers form ambiguous beliefs. Thereby a set P of probability measures is assumed

to comprise likely candidates to map the future dynamics.

Technically spoken, these measures are generated from P by means of density generators,

θ.11 Such a probability measure is denoted by Qθ in the following. By restricting the density

generators to a certain range like a real-valued interval [−κ, κ], we are enabled to confine

the range of deviations from the original measure P . The broader this interval is, the larger

the set of probability measures, P =
{
Qθ |θ ∈ [−κ, κ]

}
, and thus the higher the degree of

ambiguity. This specific notion of confining the density generators to an interval [−κ, κ] is

named κ-ignorance by Chen & Epstein (2002), who have applied this to a different field of

research.

Endowed with this concept we can now define a stochastic processes (Bθ
t )0≤t≤T by

(7) Bθ
t = Bt + tθ

for each θ ∈ [−κ, κ]. As Girsanov’s theorem shows, each process (Bθ
t )0≤t≤T defined as above

is a standard Brownian motion with respect to Qθ on (Ω,FT , Q
θ). Inserting the definition

of (Bθ
t )0≤t≤T into equation (6), we obtain for every θ ∈ [−κ, κ]

dXt = (α− σθ)Xtdt+ σXtdB
θ
t .(8)

10The Brownian motion in equation (6) is a reasonable approximation and we share this assumption with
most of the existing literature.

11Assume a stochastic process (θ)0≤t≤T that is real-valued, measurable and (Ft)-adapted. Furthermore it

is twice integrable, hence θ := (θ)0≤t≤T ∈ L
2 ⊂ L. Define

(
zθt
)
0≤t≤T by zθt = e

(
− 1

2

t∫
0
θ2sds−

t∫
0
θsdBs

)
∀t ≥ 0.

Note that the stochastic integral
t∫
0

θsdBs is well-defined for each t, as θ ∈ L. A stochastic process θ ∈ L

is a density generator, if
(
zθt
)
0≤t≤T is a (Ft)-martingale. Using a density generator θ another probability

measure Qθ on (Ω,FT ) can be generated from P by

Qθ(A) =

∫
A

zθT dP ∀A ∈ FT .

Note that any probability measure that is thus defined is called equivalent to P .
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Equation (8) displays all stochastic differential equations and thus all future developments

of (Xt)0≤t≤T that the decision maker thinks possible. Note that the implementation of

Knightian uncertainty implies different drift but the same volatility terms.

One element in the above generated set of stochastic differential equations is of special impor-

tance. Ellsberg (1961) provides experimental evidence that people usually prefer situations

where probabilities are known. Hence, it is reasonable to assume that the policy maker is

ambiguity–averse. Gilboa & Schmeidler (1989) prove that ambiguity-aversion makes the de-

cision maker maximize the worst case scenario. As e−Xt(∆Tt)2GDPt is calculated as GDP net

of damages, the worst case scenario is described by the largest value of Xt. As an illustration

and in order to gain an intuition we have numerically simulated equation (2) and (6) for a

time period of 200 years for ∆TH = 1.9◦C versus ∆TH = 3.4◦C (equivalent to pre-industry

levels of 2.5◦C versus 4◦C) of warming and three alternative drift terms. The character of the

impact function (2) for various drift terms is shown in Figure 1. The various graphs indicate

the forces at play in our analysis. Two effects must be recognised. First, the highest value

of the drift term generates the maximum of 1 − L(Xt,∆Tt) and therefore the minimum of

GDPt net of damages. Second, as can be seen the function L(Xt,∆Tt) spreads out consid-

erably for higher temperature increases. After 100 years and for ∆T = 3.4◦C the damage is

0.09154 = 9.15 percent of GDP.12

After understanding the process of Xt, we can now discuss the optimal response to climate

change under Knightian uncertainty. If the ambiguity-averse decision maker conducts no

climate policy – referred to as the business as usual approach - and faces Knightian uncertainty

in equation (1), then the resulting intertemporal welfare, WN, with consumption growing at

a rate g0 and initial consumption normalised as 1 is determined as

WN (X,∆T; ∆TH) = min
Qθ∈P

EQ
θ

 ∞∫
t=0

(
e−Xs(∆Ts)2Cs

)1−δ

1− δ
e−rsds

∣∣∣∣∣∣∣Ft


=

1

1− δ
min
Qθ∈P

EQ
θ

 ∞∫
t=0

e−Xs(1−δ)(∆Ts)2e−(r−(1−δ)g0)sds

∣∣∣∣∣∣Ft

 ,(9)

s.t. equations (4) and (8), where “N” refers to the no-actions-taken approach, r − (1− δ) g0

is assumed to be positive, and EQ
θ

[· |Ft ] represents the expectation value with respect to

Qθ ∈P conditional on Ft.13 The first equation holds as ambiguity aversion implies that the
12The calibrated damages from warming are in the range of previous estimates. Weitzman (2009b) has

assumed damage costs of 1.7 percent of GDP for 2.5◦C of warming – a level that is considered to be a threshold
for danger. For higher temperature increases he has assumed rapidly increasing damages of 9 (25) percent of
GDP for 4◦C (5◦C) of warming. Millner et al. (2010) have assumed damages of 1.7 (6.5) percent of GDP for
2.5◦C (5◦C) of warming.

13For reasons of mathematical tractability we assume that the continuous Knightian uncertainty is inde-
pendent of time and therefore the planning horizon is infinite. The reasoning for the perpetual assumption
is that the underlying time scales in the natural climate system are much longer than those in the economic
system. Technically, we consider T → ∞ for (Bt)0≤t≤T and (Bθt )0≤t≤T in the above made introduction to
the concept of Knightian uncertainty.
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Figure 1: Simulated Damages 1 − L(Xt,∆Tt) Due To Global Warming in Percent of GDP.
The initial value for X is X0 = 0.008 and H = 100. The simulated time series are computed
ignoring the uncertainty part of equation (6), i.e. dXt = αXtdt.

policy maker reckons with the lowest expected welfare value.14 Please note that the impact of

Knightian uncertainty is not necessarily monotonous for the policy maker. As shown in the

following, WN consists of two components: a particular integral that expresses the perpetual

business as usual policy and the real options to adopt the policy. Both parts are affected by

the Knightian uncertainty.15

For the sake of analytical tractability, we apply a Taylor series expansion to e−Xs(1−δ)∆T2
s

such that

(10) e−Xs(1−δ)∆T2
s ∼= 1−Xs (1− δ) ∆T2

s +
1

2

(
Xs (1− δ) ∆T2

s

)2
,

where 0 < L (∆Tt) ≤ 1 and ∂L/∂ (∆Tt) ≤ 0 still hold.16 By inserting (10) into (9) we thus
14First, the ambiguity-averse policy maker takes only the probability measure into consideration that creates

the worst outcomes for the welfare. Then she strives to find the policy strategy that maximises this ‘worst-
case welfare function’. The maxmin nature of the problem links the analysis with contributions on robust
control. See, for example, Funke & Paetz (2011).

15Though real options only dominate the particular integral with extreme Knightian uncertainty, while the
effect of smaller Knightian uncertainty on the particular integral is prevailing.

16Real option models suggested in the literature seem always to make a trade-off between analytical
tractability and realism. In this paper we analyse a model that combines both features into one model:
the model has a rich analytical structure and nevertheless the analytical forms of the particular solutions can
be obtained. The approximation appears from simulations to be a good proxy. The numerical simulations
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obtain

WN (X,∆T; ∆TH)

(11)

=
1

1− δ
min
Qθ∈P

EQ
θ

 ∞∫
t=0

(
1−Xs (1− δ) ∆T2

s +
1

2

(
Xs (1− δ) ∆T2

s

)2)
e−(r−(1−δ)g0)sds

∣∣∣∣∣∣Ft

 ,
s.t. equation (4) and (8). Using Itô’s Lemma and following the standard dynamic pro-

gramming argument, we formulate the problem in terms of the Hamilton-Jacobi-Bellman

equation17

(r − (1− δ) g0)WN =
1

1− δ
−X∗∆T2 +

1

2
X∗

2
(1− δ) ∆T4

+
ln (2)

H
(2∆TH −∆T)

∂WN

∂∆T
+ (α+ κσ)X∗

∂WN

∂X∗
+

1

2
σ2X

2 ∂2WN

∂X∗2
.(12)

The asterisk represents the density generator −κ, meaning that Q∗ is generated by −κ and

the stochastic process X∗ is defined by inserting −κ into equation (8):

dX∗t = (α+ σκ)X∗t dt+ σX∗t dB
−κ
t .(13)

For policies to be optimal, equation (12) must hold.

The solution of equation (12) is the sum of a particular and general solution. The particular

solutionWNP is obtained by integrating the integral forWN of equation (11) without consid-

ering possible policy intervention. Therefore, the real options terms are not exercised. It is

straightforward to explainWNP as the value of the business as usual policy. The policy maker

does not intervene through exercising the real options to reduce the green house gas emissions,

which leads to a cap of the future temperature changes ∆TH . The general/homogeneous so-

lutions or real options solutionsWNG are obtained by focusing attention on the homogeneous

part of equation (12) such that

(r − (1− δ) g0)WNG =
ln (2)

H
(2∆TH −∆T)

∂WNG

∂∆T

+ (α+ κσ)X∗
∂WNG

∂X∗
+

1

2
σ2X∗

2 ∂2WNG

∂X∗2
.(14)

Now we turn our attention to the welfare value of implementing a climate policy. Let us

assume that the policy maker is willing to pay annual abatements costs w (τ) as a percentage

of GDP to limit the temperature increase at t = H to less than or equal to τ : ∆TH ≤ τ .18

we conduct in the next section show that the thresholds X are around 0.012 by the benchmark values, which
implies that the scale of the 2nd order term for X is relatively small (0.5 · 0.0122 = 0.000072), compared with
the first order term.

17For the derivation please see Appendix A.
18In practical terms, this means that the policy maker reduces Gt in equation (3) so that the increase in
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Analogous to the derivation procedure in Appendix A, the intertemporal welfare function of

taking action to reduce the green house gas emission, WA, is then given by

(r − (1− δ) g0)WA = (1− w(τ))1−δ
(

1

1− δ
−X∗∆T2 +

1

2
X∗

2
(1− δ) ∆T4

)
+

ln (2)

H
(2τ −∆T)

∂WA

∂∆T
+ (α+ κσ)X∗

∂WA

∂X∗
+

1

2
σ2X∗

2 ∂2WA

∂X∗2
,(15)

which is derived from the following integral

WA (t = 0, X,∆T; τ) =
1

1− δ
×

(16)

EQ
∗

(1− w (τ))1−δ
∞∫

t=0

(
1−X∗s (1− δ) ∆T2

s +
1

2

(
X∗s (1− δ) ∆T2

s

)2)
e−(r−(1−δ)g0)sds

∣∣∣∣∣∣Ft

 ,
s.t. equation (8), and equation (17) that is

(17) d∆Ts =
ln (2)

H
(2τ −∆Ts) ds,

where equation (17) is a variant of equation (4) by replacing ∆TH with τ . If climate policy

is time-consistent, then the solutions to WA can be obtained by integrating equation (17)

directly. In this case, the thresholds for X∗ of taking actions to limit the future temperature

increase to less than or equal to τ at t = H are then computed from the identity

(18) W (taking action) = W (business as usual) + Real options.

Substituting, we have

(19) WA
(
X̄,∆T; τ

)
= WNP

(
X̄,∆T; ∆TH

)
+WNG

(
X̄,∆T; ∆TH

)
,

where X̄ denotes the thresholds at which the policy-maker would take action by exercising

the real options today and committing paying annual abatement costs w (τ) in percent of

GDP to limit the future temperature increase to less than τ at t = H. On the contrary,

exercising of the real options WNG
(
X̄,∆T; ∆TH

)
implies that the policy maker forgoes the

option to wait and act later as more information about Xt becomes available.

The next step is to solve the particular integrals of WNP and WA, and real options WNG.

As there are no uncertain terms for the processes of changes in temperatures ∆Tt, we can

use equation (5) to obtain

(20) ∆Tt = 2τ
(

1− e−
ln 2
H
t
)
.

temperature is limited to less than τ at t = H.

11



As shown in Appendix B the following particular integrals result from Itô’s Lemma:

WNP (X,∆T; ∆TH) =
1

1− δ

[
1

r − (1− δ) g0
− 4∆T2

H (1− δ) γ1X
∗ + 8∆T4

H (1− δ)2 γ2X
∗2
](21)

WA (X,∆T; τ) =
(1− w (τ))1−δ

1− δ

[
1

r − (1− δ) g0
− 4∆τ2 (1− δ) γ1X

∗ + 8∆τ4 (1− δ)2 γ2X
∗2
]
.

(22)

where

γ1 =
1

η1
− 2

η1 + ln 2
H

+
1

η1 + 2 ln 2
H

,

γ2 =
1

η2
− 4

η2 + ln 2
H

+
6

η2 + 2 ln 2
H

− 4

η2 + 3 ln 2
H

+
1

η2 + 4 ln 2
H

,

η1 = r − (1− δ) g0 − (α+ κσ) ,

η2 = r − (1− δ) g0 −
(
2 (α+ κσ) + σ2

)
.

Note that it is assumed that both η1 and η2 are positive.

After obtaining the analytical particular solutions of equations (21) and (22), we now need to

turn our attention to the real options term WNG in equation (14). In Appendix C we show

that the general solutions have the forms:

WNG (t = 0, X,∆T; ∆TH) = A1X
∗β1 (∆T2 − 4∆TH∆T + 4∆T2

H

)
,(23)

where β1 is the positive root of the quadratic characteristic equation

(24)
1

2
σ2β (β + 1) + (α+ κσ)β −

(
r − (1− δ) g0 + 2

(
ln (2)

H

))
= 0,

and A1 is the unknown parameter to be determined by the value-matching and smooth-

pasting conditions. The meaning of equation (23) is straightforward. For a small ∆TH the

value of the options to take actions is small – the option of taking action is reduced for

less global warming. The effective discount rate for real options is a positive function of

2ln (2) /H. As we know from equation (4), ln (2) /H also denotes the adjustment speed of

changes in temperature. Higher adjustment speed to the higher temperature (for example,

H = 50 years instead of H = 100 years) means that the damage is higher and thus the

option value is smaller. After obtaining the solutions to equation (19) by applying the value-

matching condition, the smooth-pasting condition is given by equalising the derivative of

(22) with respect to X∗ with the sum of the derivatives of (21) and (23) with respect to X∗.

12



Substituting (21) – (23) back into the value-matching and smooth-pasting conditions yields

4γ1

(
∆T2

H −∆τ2 (1− w (τ))1−δ
)
X̄∗ − 8 (1− δ) γ2

(
∆T2

H − (1− w (τ))1−δ τ4
)
X̄∗

2

=
1− (1− w (τ))1−δ

(r − (1− δ) g0) (1− δ)
+A1X̄

∗β1 (∆T2 − 4∆TH∆T + 4∆T2
H

)
,(25)

and

4γ1

(
∆T2

H −∆τ2 (1− w (τ))1−δ
)
− 16 (1− δ) γ2

(
∆T2

H − (1− w (τ))1−δ τ4
)
X̄∗

= A1β1X̄
∗β1−1 (

∆T2 − 4∆TH∆T + 4∆T2
H

)
.(26)

So far, our discussion of Knightian uncertainty has been exclusively analytical. With the

optimality conditions and the value-matching and smooth-pasting conditions, we can now

proceed to the numerical simulations of the model.

3 Numerical Simulations and Results

While the preceding section has laid out the modelling framework, we now focus on a thor-

ough numerical analysis of the model. Firstly, we aim to clarify whether the more realistic

assumption of ambiguity implies a timing of policy adoption that is different from the one

in the usually applied approach of risk. Secondly, our simulations illustrate the magnitude

of the effects in terms of changes in the threshold of taking action. Note, however, that the

goal of this paper is not to derive precise quantitative estimates of the impact of Knightian

uncertainty, but rather to illustrate the scale of the Knightian uncertainty impact, and to see

what we can learn from this framework. For example, we may find out the sensitivity of how

the model reacts to the choice of κ, which is problematic to quantify. More precisely, the

sensitivity to κ is compared with the sensitivity to the other parameters whose calibration

is up for debate. The baseline calibration of these parameters requires the use of judgement,

i.e. they reflect a back-of-the-envelope calculation.19

The unit time length corresponds to one year. Our base parameters are σ = 0.075, κ = 0.02,

r = 0.04, α = 0.0, g0 = 0.01, δ = 0.0, and H = 100. ∆TH is assumed to be 3.4◦C which is

equivalent to 4 degrees of warming since the pre-industrial level. τ is assumed to be 1.4◦C

by assumption which is equivalent to 2 degrees of warming compared with the pre-industrial

level. Special attention has to be paid to the calibration of w(τ). The term w(τ) represents

the achievability and costs of climate targets. What are the economic costs of reaching the

target of climate stabilisation at no more than 2◦C above pre-industrial level by the end of

this century? To assess this question, Edenhofer et al. (2010) have compared the energy-
19Despite the increasingly detailed understanding of climate processes from a large body of research, various

parameters involved inevitably remain inestimable, except in retrospect. Moreover, the calibrated model is
not based on detailed time series data in the way econometric models are and does not have the projective
power of the latter.
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environment-economy models MERGE, REMIND, POLES, TIMER and E3MG in a model

comparison exercise. In order to improve model comparability, the macroeconomic drivers

in the five modelling frameworks employed were harmonised to represent similar economic

developments. On the other hand, different views of technology diffusion and different struc-

tural assumptions regarding the underlying economic system across the models remained.

This helps to shed light on how different modelling assumptions translate into differences in

mitigation costs. Low stabilisation crucially depends upon learning and technologies avail-

able. Despite different structures employed in the models, four of the five models show a

similar pattern in mitigations costs for achieving the first-best 400ppm CO2 concentration

pathway. After allowing for endogenous technical change and carbon capture and storage

with a storage capacity of at least 120 GtC, the mitigation costs are estimated to be ap-

proximately 2 percent of worldwide GDP. These costs turned out to be of a similar order of

magnitude across the models. We therefore assume that w(τ) = 0.02.

In the real option literature the problem we must solve is referred to as “optimal stopping”.

The idea is that at any point in time the value of temperature reductions is compared with

the expected value of waiting dt, given the available information set and the knowledge of

the stochastic processes. First, we consider the thresholds for adopting climate policies, i.e.

we calculate the optimal timing of adopting climate policies. The optimal strategy is to stop

and adopt the climate policy right now if X∗t≥ X̄∗ and to continue waiting if X∗t< X̄∗, where

X̄∗ is the threshold value.20 To start with, in Figures 2 and 3 we focus our attention on the

sensitivity of the optimal thresholds of an ambiguity-averse policy maker with respect to the

degree of Knightian uncertainty κ and changes in the degree of risk, i.e. the volatility of the

geometric Brownian motion process σ. The solutions for κ = 0 characterise the situation of

a single probability measure and therefore the situation without Knightian uncertainty as in

a traditional real option framework.

Figure 2: The Climate Policy Thresholds for Alternative κ’s and α’s

20It is worth conjecturing that the existence of the no action area sheds light on why policy makers often
deem it desirable to stay put, contrary to intuition which stems from thinking in terms of a simple cause and
effect framework.

14



Figure 2 provides a sensitivity analysis of the threshold with respect to κ. The numerical

results indicate an acceleration of climate policy for higher degrees of Knightian uncertainty,

i.e. increasing ambiguity has an unequivocally positive impact upon the timing of optimal

climate policy and shrinks the continuation region where exercising climate policy is sub-

optimal. Hence, this result for the special case of ambiguity in the damage costs is in line

with the literature that examines Knightian uncertainty in other components of an economic

climate model, see Asano (2010) and Vardas & Xepapadeas (2010). Figure 2 also shows that

this result is insensitive to the choice of the drift parameter α, which can be regarded as a

measure of the economy’s vulnerability. The higher α is, the more vulnerable the economy

over time. Therefore it is clear, that a higher vulnerability implies a decrease of the threshold.

Figure 3: The Climate Policy Thresholds for Alternative σ’s and κ’s

In contrast, Figure 3 indicates that the threshold value at which climate policy is implemented

is increasing in the noisiness level σ. The intuition is that the policy maker can counteract

the impact from additional risk by a wait and see attitude for the time being. The case κ =

0 again represents the case of no Knightian uncertainty. As expected, increased Knightian

uncertainty tends to accelerate optimal timing, while increased risk σ leads to the opposite

response. Additional observations concerning the scale of these effects emerge from a bird’s
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eye examination of the 3-dimensional figure below. The perspective is such that the viewer

is looking from the origin from a point high in the positive orthant, i.e. from a low value

for all three axis variables. It is evident that an increase in κ has a comparatively smaller

impact on the climate policy threshold. Hence, the correct calibration of the noisiness level

is more crucial to the decision on the optimal timing of a climate policy than the degree of

ambiguity.

Figure 4: The Climate Policy Thresholds for Simultaneous Changes in the Discount Rate r
and κ

How to calibrate the discount rate is one of the most controversial questions in the economic

literature on climate change, e.g. see Stern (2007). As this problem is still far from being re-

solved, the sensitivity to alternative discounting assumptions needs to be explored. Consider

r fixed, Figure 4 shows that Knightian uncertainty again accelerates the climate policy adop-

tion. On the contrary, for a fixed κ, the simulation confirms the view that higher discount

rates bolster the reasons for taking a “wait and see attitude” towards climate policy. This is

due to the fact that for a small value of r the particular integral is a good deal bigger and

therefore the intertemporal damage is substantially larger. Conversely, a higher discounting

factor will trigger a later adoption of climate policy. Figure 4 also reveals that the problematic

choice of the discount rate is of more importance to the simulation results than Knightian

uncertainty, as the effects caused by a marginal increase of r counteracts the outcome in-

duced by a marginal increase of κ. This highlights the importance of attaining a consensus

on the discount rate before an appraisal on the optimal timing of policy implementation can

be achieved.

As already referred to at the beginning of this section, estimations of the abatement costs

also face a lot of uncertainties. Figure 5 provides a sensitivity analysis of the thresholds with

respect to w(τ), i.e. we illustrate the impact of alternative climate stabilisation costs upon the

threshold. This simulation shows that higher climate stabilisation costs lead to an increase of

16



Figure 5: The Climate Policy Thresholds for Alternative Costs of Climate Stabilisation

the no action area, i.e. an increasing w(τ) increases the climate policy threshold. Intuitively,

this makes perfect sense. Higher costs make climate policies less attractive for policy makers,

so policy makers hesitate to perform them in the first place. However, the option value

of the climate policy opportunity is again lower under Knightian uncertainty than in the

standard model. Therefore, an ambiguity-averse policy maker acts earlier. However, changes

in the abatement costs have a more influential effect on the timing than changes in Knightian

uncertainty.

Figure 6: The Impact of Changes in ∆TH Upon the Threshold

Finally we analyse how different expected degrees of warming in the business as usual scenario,

i.e. changes in ∆TH , affect the threshold. Looking back on all IPCC assessments, it becomes

evident that uncertainty about ∆TH could not be resolved significantly in the last years.
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Accounting for different assumptions of ∆TH , Figure 6 clearly indicates that the tactic to

keep options open and await new information about the temperature increase rather than

undertake climate policy today becomes less attractive. In other words, higher ∆TH values

accelerate climate policies by shrinking the no action area. In contrast to the simulations

above, an increase of ∆TH and κ work in the same direction. However, the effects of a change

in κ are again of secondary importance.

All simulations present similar results. Compared to the assumption of risk, Knightian un-

certainty in the damage costs accelerates the climate policy adoption. However, the size of

effects caused by Knightian uncertainty is rather small compared to the impacts of variations

in the other parameters. Assuming a higher noisiness level, a higher discount rate or higher

climate policy costs swamps the effects caused by Knightian uncertainty and thus implies the

recommendation to delay the adoption of a climate policy. Likewise, implementing a higher

temperature increase in the business as usual scenario exerts a more dominating influence on

the policy maker’s decision to prevent climate change. Therefore we conclude, that Knightian

uncertainty is no "carte blanche" extreme policy activism.

4 Conclusions

The modelling of Knightian uncertainty is a relatively unchartered area of climate research.

In spite of its clear climate policy relevance, few authors have explored the topic yet. While

the paper will be of interest to specialists in real option theory, given the policy importance

of the issue in hand we also believe that our assessment of the central question motivating

our analysis will be of interest to a wider audience of climate scientists and policy makers.

A unifying message from our paper could be stated as follows: We have demonstrated that

Knightian uncertainty affects irreversible climate policies in a way which significantly differs

from the impact of risk, and that Knightian uncertainty accelerates climate policy. However,

our simulations of the model have revealed that Knightian uncertainty does not necessarily

imply extreme policy activism. When assuming different but also feasible values for other

crucial parameters, the size of effects caused by Knightian uncertainty turns out to be com-

paratively small. For example, a consensus on the discount rate would have a bigger impact

on the policy maker’s decision. These insights hold non-trivial value for decision making.

We believe that our application of Knightian uncertainty comes with an advantage and a

disadvantage. The advantage is that it allows one to recognise the difference between risk

and uncertainty and its implied size of effects.21 Thus it provides a more realistic grounding

for assessing current climate policy and to derive optimal and rational policy trajectories

when fundamental uncertainties and ambiguities are involved.22 On the other hand one has
21To quote from Mastrandrea & Schneider (2004, p. 571) “we do not recommend that our quantitative

results be taken literally, but we suggest that our probabilistic framework and methods be taken seriously”.
See also Schneider & Mastrandrea (2005).

22Some readers may find the ambiguity and the additional layer of uncertainty psychologically disturbing.
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to admit that the comparative static results also have their limitations. First, the numerical

results do not account for the fundamental dynamic nature of abatement and mitigation

policies. Second, we have focussed on Knightian uncertainty in the damage function. How-

ever, there are further layers of uncertainty in complex climate models about which we have

ambiguous beliefs. Our analysis may therefore be considered as a first step and it may be

refined in several ways. One future research question is the possibility of tipping points. In

addition to a high level of complexity, the major challenge of this extension is the need to

incorporate thresholds, discontinuities and sudden switches which remain poorly understood

on a theoretical level.23 Another interesting direction goes towards a more detailed analysis

of short- and medium-run climate projections.24 We hope to take up some of these tasks in

our future work and we consider it probable that this research agenda and the conceptual

follow-up issues will continue to warrant substantial research effort in the future.
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Appendices

A Derivation of equation (12)

First, we to show that the Qθ ∈P that minimises the expectation value in equation (11) is

generated by θ = −κ.
We know that Xs (1− δ) ∆T2

s has a small value so that 1
2

(
Xs (1− δ) ∆T2

s

)2 only adds in-

significantly to the term in equation (11). We therefore neglect the quadratic term when

minimising the expectation value in the following.25

But if the previously agreed modeling framework was wrong and the certainty about appropriate climate
policy unjustified, it seems an improvement.

23The climate literature on tipping points is, indeed, a fast growing industry. Unfortunately, there are
not any models yet incorporating such nonlinearities into micro-founded decision-making frameworks with
Knightian uncertainty. It must be emphasised that the model described here is sufficiently general to study
various tipping points. It is only necessary to fine-tune the framework for specific nonlinearities and to embed
further stochastic processes.

24In Figure 2 – 6 the impact of Knightian uncertainty is “statically” addressed. Hence, we may next aim
to study the temporal implications of Knightian uncertainty, and the impact of less medium-run ambiguity
resulting from more reliable decadal projections upon optimal climate policies.

25We only show the proof for the 1st order term for the "whole exponential loss function." Small X means
that taylor’s expansions are a good approximation. As the policymaker takes a pessimistic view of the loss
function, it is intuitive and straightforward that the lowest value of κ for the loss function shall be obtained.
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Additionally Fubini’s theorem for conditional expectations transforms WN (X,∆T; ∆TH) to

1

1− δ
min
Qθ∈P

∞∫
t=0

e−(r−(1−δ)g0)sEQ
θ [

1−Xs (1− δ) ∆T2
s |Ft

]
ds.(A.1)

By applying Itô’s Lemma to the logarithm of Xs we obtain ∀ s ≥ 0 :

Xs = X0e
(α− 1

2
σ2−σθ)s+σBθs = X0e

(α− 1
2
σ2−σθ)seσB

θ
s .(A.2)

Obviously it holds that

Xs = X0e
(α− 1

2
σ2−σθ)seσB

θ
s ≤ X0e

(α− 1
2
σ2+σκ)seσB

θ
s ∀ s ≥ 0, ∀ θ ∈ [−κ, κ] .(A.3)

Due to the monotonicity of the conditional expectation value, we obtain

EQ
θ
[
1−X0e

(α− 1
2
σ2−σθ)seσB

θ
s (1− δ) ∆T2

s |Ft

]
≥ EQθ

[
1−X0e

(α− 1
2
σ2+σκ)seσB

θ
s (1− δ) ∆T2

s |Ft

]
=
(

1−X0e
(α− 1

2
σ2+σκ)s

)
(1− δ) ∆T2

sE
Qθ
[
eσB

θ
s |Ft

]
=
(

1−X0e
(α− 1

2
σ2+σκ)s

)
(1− δ) ∆T2

s e
1
2
σ2s

=
(

1−X0e
(α− 1

2
σ2+σκ)s

)
(1− δ) ∆T2

s E
Q−κ

[
eσB

−κ
s |Ft

]
∀s ≥ 0, ∀θ ∈ [−κ,κ] .(A.4)

Thus, the measure Q−κ ∈ P minimises the expectation value in (11), which we therefore

denote as Q∗. Consequently the process X that results from implementing θ = −κ into

equation (8) shall be called X∗.

For the following considerations let WN (X,∆T; ∆TH) be conveniently abbreviated by WN.

The corresponding Hamilton-Jacobi-Bellman equation to equation (11) is as follows (see for

example chapter 3.1. in Stokey (2009) as an introduction to the Hamilton-Jacobi-Bellman

equation):

(r − (1− δ) g0)WN =
1

1− δ

(
1−X∗ (1− δ) ∆T2 +

1

2

(
X∗ (1− δ) ∆T2

)2)
+

1

dt
EQ

∗ [
dWN |Ft

]
=

1

1− δ
−X∗∆T2 +

1

2
X∗

2
(1− δ) ∆T4 +

1

dt
EQ

∗ [
dWN |Ft

]
.(A.5)

WN is obviously differentiable at least once in ∆T and twice in X∗, which allows to apply

However, the exponential form of the loss function prevents us from obtaining the proof. We therefore opt to
focus attention upon the first order term to show the choice of the lowest value of kappa by the policy maker,
while ignoring the comparably smaller 2nd-order term, without the loss of economic intuition.
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Itô’s Lemma:

dWN =
∂WN

∂∆T
d∆T +

∂WN

∂X∗
dX∗ +

∂2WN

∂X∗2
(dX∗)2

=
ln (2)

H
(2∆TH −∆Tt)

∂WN

∂∆T
dt+

∂WN

∂X∗
[
(α+ σκ)X∗t dt+ σX∗t dB

−κ
t

]
+

1

2
σ2X∗

2 ∂2WN

∂X∗2
dt,(A.6)

by using equation (4) in the text. Taking expectation of (A6) and dividing by dt we obtain

E
[
dWN

]
dt

=
ln (2)

H
(2∆TH −∆Tt)

∂WN

∂∆T
+ (α+ κσ)X∗t

∂WN

∂X∗
+

1

2
σ2X∗

2 ∂2WN

∂X∗2
.(A.7)

Substituting (A7) back to the Hamilton-Jacobi-Bellman equation (A5) gives

(r − (1− δ) g0)WN =
1

1− δ
−X∗∆T2 +

1

2
X∗

2
(1− δ) ∆T4

+
ln (2)

H
(2∆TH −∆T)

∂WN

∂∆T
+ (α+ κσ)X∗

∂WN

∂X∗
+

1

2
σ2X

2 ∂2WN

∂X∗2
,(A.8)

which is equation (12) in the text.

B Particular solutions to WNP and WA

Using equations (11) and (5) yields the following particular integral,

WNP (X,∆T; ∆TH) =
1

1− δ
×

(B.1)

∞∫
t=0

[
1−

2∑
i=1

(−1)i+1

i!
X∗

i
e[i(α+κσ)+ 1

2
i(i−1)σ2]s (1− δ)i

(
2∆TH

(
1− e−

ln 2
H
s
))2i

]
e−(r−(1−δ)g0)sds.

In the same manner we employ equation (16) and (20) to derive

WA (X,∆T; τ) =
(1− w (τ))1−δ

1− δ
×

(B.2)

∞∫
t=0

[
1−

2∑
i=1

(−1)i+1

i!
X∗

i
e[i(α+κσ)+ 1

2
i(i−1)σ2]s (1− δ)i

(
2∆TH

(
1− e−

ln 2
H
s
))2i

]
e−(r−(1−δ)g0)sds.

Equations (B1) and (B2) result from Itô’s Lemma which means that equation (A2) with

θ = −κ is applied to equation (11) and (16), respectively. Furthermore please note that
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EQ
−κ
[
eσB

−κ
s |Ft

]
= e

1
2
σ2s. By expanding the terms

(
1− e−

ln 2
H
t
)2

= 1− 2e−
ln 2
H
t + e−2 ln 2

H
t(B.3)

and (
1− e−

ln 2
H
t
)4

= 1− 4e−
ln 2
H
t + 6e−2 ln 2

H
t − 4e−3 ln 2

H
t + e− 4 ln 2

H
t,(B.4)

we obtain

[
1−

2∑
i=1

(−1)i+1

i!
X∗

i
e[i(α+κσ)+ 1

2
i(i−1)σ2]s (1− δ)i

(
2∆TH

(
1− e−

ln 2
H
s
))2i

]
e−(r−(1−δ)g0)s

(B.5)

= e−(r−(1−δ)g0)s − 4∆T2
H (1− δ)X∗e(α+κσ)s

(
1− 2e−

ln 2
H
s + e−2 ln 2

H
s
)
e−(r−(1−δ)g0)s

+ 8∆T4
T (1− δ)2X∗

2
e[2(α+κσ)+σ2]s×(

1− 4e−
ln 2
H
s + 6e−2 ln 2

H
s − 4e−3 ln 2

H
s + e− 4 ln 2

H
s
)4
e−(r−(1−δ)g0)s.

Substituting (B5) back into (B1) and integrating yields

WNP (X,∆T; ∆TH) =
1

1− δ

[
1

r − (1− δ) g0
− 4∆T2

H (1− δ)X∗
(

1

η1
− 2

η1 + ln 2
H

+
1

η1 + 2 ln 2
H

)

+8∆T4
H (1− δ)2X∗

2

(
1

η2
− 4

η2 + ln 2
H

+
6

η2 + 2 ln 2
H

− 4

η2 + 3 ln 2
H

+
1

η2 + 4 ln 2
H

)]
,(B.6)

where

η1 = r − (1− δ) g0 − (α+ κσ) ,

η2 = r − (1− δ) g0 −
(
2 (α+ κσ) + σ2

)
.

Similarly, we have

WA (X,∆T; τ) =
(1− w (τ))1−δ

1− δ

[
1

r − (1− δ) g0
− 4∆τ2 (1− δ)X∗

(
1

η1
− 2

η1 + ln 2
H

+
1

η1 + 2 ln 2
H

)

+8∆τ4 (1− δ)2X∗
2

(
1

η2
− 4

η2 + ln 2
H

+
6

η2 + 2 ln 2
H

− 4

η2 + 3 ln 2
H

+
1

η2 + 4 ln 2
H

)]
,(B.7)

which are equations (21) and (22) in the text, respectively.
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C General Solution WNG for WN

We guess the solution to equation (14) has the following functional form:

WNG (t = 0, X,∆T; ∆TH) = AX∗
β (

∆T2 + C∆T +D
)
.(C.1)

where A, C, D are some parameters. Calculating derivatives, we obtain

∂WNG

∂∆T
= AX∗

β
(2∆T + C) ,(C.2)

X∗
∂WNG

∂X∗
= βAX∗

β (
∆T2 + C∆T +D

)
and(C.3)

X∗
2 ∂2WNG

∂X∗2
= β (β − 1)AX∗

β (
∆T2 + C∆T +D

)
.(C.4)

Substituting equations (C1) - (C4) back to equation (14) and rearranging yields

2

(
ln (2)

H

)
AX∗

β

(
∆T2 −

(
2∆TH −

C

2

)
∆T− C∆TH

)
=

[
− (r − (1− δ) g0) + (α+ κσ)β +

1

2
σ2β (β − 1)

]
AX∗

β (
∆T2 + C∆T +D

)
.(C.5)

Solving (C5) requires ∆T2 −
(
2∆TH − C

2

)
∆T − C∆TH =

(
∆T2 + C∆T +D

)
. Thus, we

have

C = −4∆TH(C.6)

and

D = −C∆TH = 4∆T2
H .(C.7)

Plugging (C6) and (C7) into (C5), we obtain[
−
(
r − (1− δ) g0 + 2

(
ln (2)

H

))
+ (α+ κσ)β +

1

2
σ2β (β − 1)

]
WNG = 0,(C.8)

where WNG = AX∗
β (

∆T2 − 4∆TH∆T + 4∆T2
H

)
. The solution of (C8) requires

(α+ κσ)β +
1

2
σ2β (β − 1)−

(
r − (1− δ) g0 + 2

(
ln (2)

H

))
= 0.(C.9)

Let β1 and β1 be the positive and negative roots of the above characteristic function, respec-

tively. By some manipulations, this leads to

WNG = A1X
∗β1 (∆T2 − 4∆TH∆T + 4∆T2

H

)
−A2X

∗β2 (∆T2 − 4∆TH∆T + 4∆T2
H

)
.

(C.10)
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As we only consider the option to take action, we need to set the boundary condition such

that lim
X→0

WNG (X) = 0, which is tantamount to a zero option value of a climate policy, if

climate change causes no damages that reduce the GDP. Therefore, the general solution with

the negative root can be ignored. Consequently, we obtain

WNG = A1X
∗β1 (∆T2 − 4∆TH∆T + 4∆T2

H

)
.(C.11)
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