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Abstract

The real option management of commodity conversion assets gives rise to intractable Markov decision pro-

cesses (MDPs). This is due primarily to the high dimensionality of a commodity forward curve, which is

part of the MDP state when using high dimensional models of the evolution of this curve, as commonly

done in practice. Focusing on commodity storage, we develop a novel approximate dynamic programming

methodology that hinges on the relaxation of approximate linear programs (ALPs) obtained using value

function approximations based on reducing the number of futures prices that are part of the MDP state. We

derive equivalent approximate dynamic programs (ADPs) for a class of these ALPs, also subsuming a known

ADP. We obtain two new ADPs, the value functions of which induce feasible policies for the original MDP,

and lower and upper bounds, estimated via Monte Carlo simulation, on the value of an optimal policy of

this MDP. We investigate the performance of our ADPs on existing natural gas instances and new crude oil

instances. Our approach has potential relevance for the approximate solution of MDPs that arise in the real

option management of other commodity conversion assets, as well as the valuation and management of real

and financial options that depend on forward curve dynamics.

1 Introduction

Real options are models of projects that exhibit managerial flexibility (Dixit and Pindyck 1994,

Trigeorgis 1996). In commodity settings, this flexibility arises from the ability to adapt the operating

policy of commodity conversion assets to the uncertain evolution of commodity prices. For example,

consider a merchant that manages a natural gas storage asset (Maragos 2002). This merchant can

purchase natural gas from the wholesale market at a given price, and store it for future resale into

this market at a higher price. Other examples of commodity conversion assets include assets that

produce, transport, ship, and procure energy sources, agricultural products, and metals.

Managing commodity conversion assets as real options (Smith and McCardle 1999, Geman

2005) gives rise to, generally, intractable Markov Decision Processes (MDPs). In a given stage,

the state of such an MDP includes both endogenous and exogenous information. The endogenous

information describes the current operating condition of the conversion asset, while the exogenous

information represents current market conditions. Changes in the endogenous information are
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caused by managerial decisions that modify the asset operating condition. In contrast, the exogenous

information evolves as a result of market dynamics. The MDP intractability is due primarily to the

common use in practice of high dimensional models of the evolution of the exogenous information

(Eydeland and Wolyniec 2003, Gray and Khandelwal 2004). To illustrate, consider the MDP for

the real option management of a commodity storage asset formulated by Lai et al. (2010) using

a multi-maturity version of the Black (1976) model of futures price evolution. The endogenous

information in this MDP is the asset available inventory at a given date, a one dimensional variable;

the exogenous information in this MDP is the commodity forward curve at a given time, an object

with much higher dimensionality than inventory.

Approximations are thus typically needed to solve such MDPs. These approximations involve

determining a feasible policy, and estimating both its value, which yields a lower bound on the

value of an optimal policy, and an upper bound on the value of an optimal policy. In this paper we

focus on the approximate solution of the intractable commodity storage MDP formulated by Lai

et al. (2010; LMS for short). To address this intractability, LMS propose an Approximate Dynamic

Program (ADP) based on a value function that in each stage only depends on the spot price, in

addition to the inventory level, and ignores all the other elements of the forward curve. Applied

to natural gas instances, their model computes near optimal policies, provided it is sequentially

reoptimized, and fairly tight dual upper bounds (Glasserman 2004, Chapter 8, and Brown et al.

2010). This Storage ADP (SADP) features a peculiar conditional expectation that makes it solvable.

It is however unclear whether this expectation might serve some other purpose.

The investigation of this conditional expectation is the starting point of our analysis. We show

that SADP is a relaxation of a math program that is equivalent to an Approximate Linear Program

(ALP; Schweitzer and Seidmann 1985, de Farias and Van Roy 2003) obtained from their MDP. The

stated conditional expectation in SADP enacts this relaxation. This relaxation is useful because

it alleviates the negative consequences, which we identify, of formulating an ALP using a value

function approximation that ignores a subset of the forward curve.

We leverage these insights by developing a novel approximate dynamic programming method-

ology that we name Partitioned Surrogate Relaxation (PSR). Our PSR approach hinges on the

relaxation of ALPs obtained from the commodity storage MDP using value function approxima-

tions that ignore a subset of the elements of the forward curve, thus reducing the dimensionality of
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the exogenous information in the state of this MDP. Given a partition of the ALP constraint set, we

replace each set in this partition by a surrogate constraint obtained as a positive linear combination

of the constraints in this set using predefined multipliers.

Our approach subsumes SADP since SADP is only one of the approximate models that can

be obtained by applying our methodology. We also obtain two new ADPs: one based on a value

function approximation that in each stage depends on the spot price and the inventory level, and

one that also depends on variables the price of the prompt month futures contract, that is, the one

with delivery in the next stage. These ADPs satisfy more general conditions that ensure that a

PSR relaxation of an ALP or of an equivalent math programming reformulation thereof yields an

ADP.

The value functions of our ADPs induce feasible policies for the original MDP, also leveraging

ADP reoptimization. Monte Carlo simulation of such policies yields estimates of valid greedy lower

bounds on the value of an optimal policy of this MDP. We also use Monte Carlo simulation to

estimate valid dual upper bounds on the value of these policies.

We benchmark the bounds computed by our ADPs on the LMS natural gas instances and a

newly created set of crude oil instances. Our reoptimized lower bounds are near optimal both on

the natural gas and crude oil instances. In particular, they are comparable to the LMS reoptimized

lower bounds on the natural gas instances. Our upper bounds either match or improve on the

LMS upper bounds for natural gas, and are essentially tight for crude oil. Compared to SADP,

one of our ADPs has a substantial computational advantage, and similar lower and upper bounding

performance; our other ADP has a smaller computational requirement without reoptimization and

delivers stronger upper bounds, but has a larger computational burden with reoptimization (however

this ADP does not rely as much on reoptimization as SADP and ADP1 do to obtain competitive

lower bounds).

Although our focus is on commodity storage, our proposed methodology has potential relevance

for the approximate solution of intractable MDPs that arise in the real option management of

other commodity conversion assets, as well as the valuation and management of real and financial

options (see the discussion in Secomandi et al. 2011, §1 for examples) that depend on forward curve

dynamics; that is, MDPs whose state includes both endogenous and exogenous information.

The remainder of this paper is organized as follows. We review the extant literature in §2. We
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provide background material in §3. In §4, we analyze SADP. We present our PSR method and our

two new ADPs in §5. In §6, we analyze the optimal value functions of these two ADPs and their

associated bounds, focusing on a tractable version of the commodity storage MDP. We discuss the

computational complexity of a specification of our approach in §7. We present our numerical results

in §8. We conclude in §9.

2 Literature Review

Approximate dynamic programming has received substantial attention in the recent literature. Bert-

sekas and Tsitsiklis (1996), Van Roy (2002), Adelman (2006), Chang et al. (2007), and Powell (2011)

are excellent sources on this topic. Schweitzer and Seidmann (1985) introduce the approximate lin-

ear programming approach to approximate dynamic programming. de Farias and Van Roy (2001,

2003, 2006) analyze it. Applications of this approach include Trick and Zin (1997) in economics;

Adelman (2004) and Adelman and Klabjan (2011) in inventory control; Adelman (2007), Farias

and Van Roy (2007), and Zhang and Adelman (2009) in revenue management; and Morrison and

Kumar (1999), de Farias and Van Roy (2001, 2003), Moallemi et al. (2008), and Veatch (2010) in

queuing. The novelty of our work relative to this literature is two fold. The first is the presence

of exogenous information in the state of the commodity storage MDP that we consider, whereas

this type of information is absent in most of the models studied in the extant approximate linear

programming literature. The second is our development and use of the PSR approach to deal with

the difficulties brought about by using a lower dimensional representation of this information in an

ALP. Our approach relies on a novel application of surrogate relaxation (Glover 1968, 1975) in an

approximate linear programming context.

The use of constraint relaxations in approximate linear programming is relatively new and the

literature is scant. Petrik and Zilberstein (2009) and Desai et al. (2011) use constraint relaxation to

improve the value function approximation obtained by solving an ALP: Petrik and Zilberstein (2009)

propose a relaxation method for ALPs that penalizes violated constraints in the objective function;

the method of Desai et al. (2011) relaxes an ALP by allowing budgeted violation of constraints.

Our surrogate relaxation approach is different from the ones used by these authors.

As in LMS, we use the information relaxation and duality approach for upper bound estimation
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discussed by Brown et al. (2010), which generalizes earlier work by Rogers (2002), Andersen and

Broadie (2004), and Haugh and Kogan (2004). However, our approach is more general than the one

of LMS. We also introduce new ADPs, adding to the literature on commodity storage valuation (e.g.,

Chen and Forsyth 2007, Boogert and De Jong 2008, Thompson et al. 2009, Carmona and Ludkovski

2010, Secomandi 2010, Wu et al. 2010, Birge 2011, Boogert and De Jong 2011, Secomandi et al.

2011, and Felix and Weber 2012). More broadly, our PSR approach potentially provides a solution

methodology for other real option problems. Our approach differs from least squares Monte Carlo

methods (Longstaff and Schwartz 2001, Tsitsiklis and Van Roy 2001), which could be used to

solve such problems (Cortazar et al. 2008), because it is based on linear programming rather than

regression.

3 Background Material

In §§3.1-3.2 we present the commodity storage MDP and the bounding approach that we use. These

subsections are in part based on §2 and §4.2 in LMS. In §3.3 we discretize the state and action spaces

of this MDP.

3.1 Commodity Storage MDP

A commodity storage asset provides a merchant with the option to purchase and inject, store,

and withdraw and sell a commodity during a predetermined finite time horizon, while respecting

injection and withdrawal capacity limits, as well as inventory constraints. The merchant’s goal is

to maximize the market value of the storage asset. We model this valuation problem as an MDP.

Purchases and injections and withdrawals and sales give rise to cash flows. The storage asset has

N possible dates with cash flows. The i-th cash flow occurs at time Ti, i ∈ I := {0, . . . , N − 1}.

Each such time is also the maturity of a futures contract. We thus focus on determining the value

of storage due to futures, rather than spot, price volatility; that is, monthly, rather than, daily

volatility. We denote as Fi,j the futures price at time Ti of a contract maturing at time Tj , j ≥ i.

The forward curve is the collection of futures prices Fi := (Fi,j , i ∈ I, j ≥ i). We adopt the

convention FN ≡ 0. We also define F ′i := (Fi,j , i ∈ I, j > i), ∀i ∈ I, for notational convenience.

The set of feasible inventory levels is X := [0, x̄], where 0 and x̄ ∈ R+ represent the minimum and
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maximum inventory levels, respectively. The absolute value of the injection capacity CI (< 0) and

the withdrawal capacity CW (> 0) represent the maximum amounts that can be injected and with-

drawn in between two successive futures contract maturities, respectively. An action a corresponds

to an inventory change during this time period. A positive action represents a withdrawal and sell

decision, a negative action a purchase and inject decision, and the zero action is the do nothing

decision. Define ·∧· ≡ min{·, ·} and ·∨· ≡ max{·, ·}. The set of feasible injections, withdrawals, and

overall actions are AI(x) :=
[
CI ∨ (x− x̄), 0

]
, AW (x) :=

[
0, x ∧ CW

]
, and A(x) := AI(x)∪AW (x),

respectively.

The immediate reward from taking action a at time Ti is the function r(a, si), where si ≡ Fi,i

is the spot price at this time. The coefficients αW ∈ (0, 1] and αI ≥ 1 model commodity losses

associated with withdrawals and injections, respectively. The coefficients cW and cI represent

withdrawal and injection marginal costs, respectively. The immediate reward function is defined as

r(a, s) :=


(αIs+ cI)a, if a ∈ R−,

0, if a = 0, ∀s ∈ R+,

(αW s− cW )a, if a ∈ R+.

(1)

Let Π denote the set of all the feasible storage policies. Given the initial state (x0, F0), valuing

a storage asset entails finding a policy in this set that realizes the maximum time 0 market value

V0(x0, F0) of this asset in this state. Thus, we are interested in solving the following problem:

V0(x0, F0) := max
π∈Π

∑
i∈I

δiE
[
r(aπi (x̃πi , F̃i), s̃i)|x0, F0

]
, (2)

where δ is the risk free discount factor from time Ti back to time Ti−1, ∀i ∈ I \{0}; E is expectation

under the risk neutral measure for the forward curve evolution (this measure is unique in our

setting); xπi is the inventory level realized at time Ti when using policy π; and aπi (xi, Fi) is the

action taken by policy π at time Ti in state (xi, Fi). Problem (2) can be equivalently formulated as
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the following commodity storage MDP, which we refer to as the Exact Dynamic Program (EDP):

VN (xN , FN ) := 0, ∀xN ∈ X , (3)

Vi(xi, Fi) = max
a∈A(xi)

r(a, si) + δE
[
Vi+1

(
xi − a, F̃i+1

)
|F ′i
]
, ∀i ∈ I, (xi, Fi) ∈ X × RN−i+ , (4)

where Vi(xi, Fi) is the optimal value function in stage i and state (xi, Fi), and we assume that F ′i

is sufficient to compute the expectation.

Consistent with the practice-based literature (Eydeland and Wolyniec 2003, Chapter 5, Gray

and Khandelwal 2004, and the discussion in LMS), we assume that EDP is formulated using a

full dimensional model of the risk neutral evolution of the forward curve. An example is the

multi-maturity version of the Black (1976) model of futures price evolution, which we use for

our computational experiments. In this model, the time t futures price with maturity at time Ti,

F (t, Ti), evolves as a driftless Brownian motion with maturity specific and constant volatility σi > 0.

The instantaneous correlation between the standard Brownian motion increments dZi(t) and dZj(t)

corresponding to the futures prices with maturities Ti and Tj , i 6= j, is ρij ∈ (−1, 1) (ρii = 1). This

model is

dF (t, Ti)

F (t, Ti)
= σidZi(t), ∀ i ∈ I, (5)

dZi(t)dZj(t) = ρijdt, ∀ i, j ∈ I, i 6= j. (6)

Model (5)-(6) can be extended by making the constant volatilities and instantaneous correlations

time dependent. This would not affect our analysis in §§4-6.

Proposition 3.1, based on Secomandi et al. (2011, Proposition 4 and Lemma 2), provides struc-

tural properties of the optimal value function and an optimal policy of EDP. These properties serve

as a reference for comparing the structural properties of the ADPs discussed in §5.

Proposition 3.1. (a) In every stage i ∈ I, the value function Vi(xi, Fi) is concave in xi ∈ X for

each given Fi ∈ RN−i+ ; and (b) an optimal policy for EDP features two base-stock targets, bi(Fi) and

b̄i(Fi) ∈ X , which depend on i and Fi; these targets are such that bi(Fi) ≤ b̄i(Fi) and an optimal
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action a∗i (xi, Fi) satisfies

a∗i (xi, Fi) =


CI ∨ [xi − bi(Fi)] , if xi ∈ [0, bi(Fi)),

0, if xi ∈
[
bi(Fi), b̄i(Fi)

]
,

CW ∧
[
xi − b̄i(Fi)

]
, if xi ∈

(
b̄i(Fi), x̄

]
.

(7)

Moreover, if CI , CW , and x̄ are integer multiples of some maximal number Q ∈ R+, then (c)

Vi(xi, Fi) is piecewise linear and continuous in xi ∈ X for each Fi ∈ RN−i+ ; (d) Vi(·, Fi) can change

slope only at integer multiples of Q; and (e) bi(Fi) and b̄i(Fi) can be chosen to be integer multiples

of Q.

3.2 Bounding Approach

In general, computing an optimal policy for EDP under a price model such as (5)-(6) is computa-

tionally intractable (see §6 for an exception). We now describe a procedure based on Monte Carlo

simulation for estimating lower and upper bounds on the EDP optimal value function in the ini-

tial stage and state, as well as obtaining a feasible policy for EDP, given an approximation to the

EDP value function. We illustrate this procedure using the value function approximation V̂i(xi, si),

which we assume is available. This function only uses the spot price si from the forward curve Fi.

Nevertheless, the same approach extends to value function approximations that depend on a larger

subset of prices in this forward curve.

Consider lower bound estimation. Given an inventory level xi and a forward curve Fi in stage i,

we use V̂i(xi, si) as an approximation of Vi(xi, Fi) to compute a feasible action in stage i and state

(xi, Fi). We do this by solving the greedy optimization problem

max
a∈A(xi)

r(a, si) + δE
[
V̂i+1 (xi − a, s̃i+1) |Fi,i+1

]
, (8)

where we assume that Fi,i+1 is sufficient for computing the expectation; for example, this is the

case with the price model (5)-(6). In computations, we numerically approximate this expectation,

e.g., as explained in §7. We obtain (8) from (4) by replacing Vi+1(·, ·) with V̂i+1(·, ·) and F ′i with

Fi,i+1. We apply the action ai(xi, si) computed in (8), which we assume is unique and refer to as the

greedy action, and sample the forward curve Fi+1 to obtain the new state (x− ai(xi, si), Fi+1). We
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continue in this fashion until we reach time TN−1. We then discount back to time T0 and cumulate

the values of the cash flows generated by this process starting from the given state (x0, F0) at stage

0. We repeat this process over multiple samples, each time starting from the state (x0, F0) at time

0, and average the sample discounted total cash flows to estimate the value of the greedy policy,

that is, the policy defined by the greedy actions in each stage and state. This provides us with an

estimate of a greedy lower bound on the EDP value of storage, V0(x0, F0).

When a value function approximation is computed by an ADP, as discussed in §§4-5, it is

typically possible to generate an improved greedy lower bound estimate by sequentially reoptimizing

this ADP to update its value function approximations within the Monte Carlo simulation used for

lower bound estimation. Specifically, solving an ADP at time Ti yields value function approximations

for stages i through N − 1. However, we only implement the greedy action induced by the stage i

value function approximation. At time Ti+1, we re-optimize the “residual” ADP, that is, the one

defined over the remaining stages i + 1 through N − 1, given the inventory level resulting from

performing this action and the newly available forward curve. We repeat this procedure until time

TN−1. Repeating this process over multiple price samples allows us to estimate a reoptimized greedy

lower bound.

For upper bound estimation, we use the information relaxation and duality approach for MDPs

(see Brown et al. 2010, and references therein). We sample a sequence of spot price and prompt

month futures price pairs P0 := ((si, Fi,i+1))N−1
i=0 starting from the forward curve F0 at time 0. We

use our value function approximation V̂ (xi, si) to define the following dual penalty for executing

the feasible action a in stage i and state (xi, Fi) given knowledge of the prompt month futures price

Fi,i+1 and the spot price in stage i+ 1, si+1:

pi(xi, a, si+1, Fi,i+1) := V̂i+1(xi − a, si+1)− E
[
V̂i+1(xi − a, s̃i+1)|Fi,i+1

]
. (9)

For computational purposes, we numerically approximate this expectation, e.g. as discussed in §7.

This penalty approximates the value of knowing the next stage spot price when performing this

action. Then, we solve the following deterministic dynamic program given the sequence P0:

Ui(xi;P0) = max
a∈A(x)

r(a, si)− pi(xi, a, si+1, Fi,i+1) + δUi+1(xi − a;P0), (10)
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∀i ∈ I and xi ∈ X , with boundary condition UN (xN ;P0) := 0, ∀xN ∈ X . In (10), the per

stage reward r(a, si) is modified by the penalty pi(xi, a, si+1, Fi,i+1) for using the future information

available in P0. We solve a collection of deterministic dynamic programs specified by (10), each one

corresponding to a sample sequence P0. We estimate a dual upper bound denoted by U0(x0, F0)

on the EDP value of storage in stage 0 and state (x0, F0), V0(x0, F0), as the average of the value

functions of these deterministic dynamic programs in this stage and state; that is, we compute an

estimate of U0(x0, F0) := E
[
U0(x0; P̃0)|F0

]
, where the expectation is taken with respect to the risk

neutral distribution of the random sequence P̃0. This estimate can be obtained efficiently when the

maximization in (10) can be reduced to an optimization over a finite set of actions. This is the case

with the value function approximations that we develop in this paper, as discussed in §§5.2-5.3.

3.3 Discretized Commodity Storage MDP

EDP has continuous state and action spaces in every stage. Our analysis in the rest of this paper

relies on formulating a discretized version of EDP, labeled as DDP, as an equivalent linear program

(Puterman 1994, §6.9). We now introduce DDP.

Under the assumption in Proposition 3.1, which holds in the remainder of this paper, we can

optimally discretize the continuous inventory set X into the finite set XD := {0, Q, 2Q, . . . , x̄}, and

the feasible action set A(x) for inventory level x ∈ XD into the finite set

AD(x) := {
[
CI ∨ (x− x̄)

]
,
[
CI ∨ (x− x̄)

]
+Q,

[
CI ∨ (x− x̄)

]
+ 2Q, . . . ,

[
x ∧ CW

]
}.

We let FDi ⊂ RN−i+ represent a finite set of forward curves at time Ti, and denote by FDi,j ⊂ R+ the

finite set of values of the futures price Fi,j when this price belongs to the forward curve Fi ∈ FDi . We

also suppose that each set FDi is available. In addition, assume that we have available a joint proba-

bility mass function defined on FDi+1 for the random vector (s̃i+1, F̃i+1,i+2, . . . , F̃i+1,N−1) conditional

on the futures price vector (Fi,i+1, Fi,i+2, . . . , Fi,N−1) ∈ FDi . For instance, such discretized sets and

associated probability mass functions could be obtained using lattice techniques, as discussed in §7.

Replacing the continuous sets that define EDP with the discretized sets discussed in this sub-
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section yields DDP:

V D
N (xN , FN ) := 0, ∀xN ∈ XD, (11)

V D
i (xi, Fi) = max

a∈AD(xi)
r(a, si) + δE

[
V D
i+1

(
xi − a, F̃i+1

)
|F ′i
]
, ∀i ∈ I, (xi, Fi) ∈ XD ×FDi , (12)

where V D
i (xi, Fi) is the DDP optimal value function in stage i and state (xi, Fi), and the expectation

is expressed with respect to the probability mass function discussed in the previous paragraph. The

optimal value functions and an optimal policy of DDP satisfy properties equivalent to the ones

stated in Proposition 3.1.

In the rest of this paper, we assume that the futures price vector (Fi,i+1, Fi,i+2, . . . , Fi,i+j) is suffi-

cient to obtain the joint probability mass function of the random vector (s̃i+1, F̃i+1,i+2, . . . , F̃i+1,i+j)

for j = 1, . . . , N−1. In particular, this implies that F ′i is the only information required to determine

the joint probability mass function of the random forward curve F̃i+1. This assumption is satisfied

by the multi-maturity Black model (5)-(6).

4 Analysis of SADP

In this section, we use math programming to analyze SADP, that is, the ADP model of LMS. This

analysis yields two key insights that set the stage for the development of our PSR methodology in

§5.

Denote by φi(xi, si) an approximation of the DDP value function, V D
i (xi, Fi), in stage i and

state (xi, Fi). This value function approximation depends on the inventory xi ∈ XDi and the spot

price si ∈ FDi,i. SADP in our notation is

SADP: φi(xi, si) = E
[

max
a∈A(xi)

r(a, si) + δE
[
φi+1(xi − a, s̃i+1)|F̃i,i+1

]
|si, F0,i+1

]
, (13)

∀i ∈ I and (xi, si) ∈ XD × FDi,i, with φN (xN , sN ) := 0, ∀xN ∈ XD. The maximization in (13) is

analogous to the maximization in (12) but uses φi(·, si+1) in lieu of Vi+1(·, Fi+1). The maximization

in (13) depends on the inventory level xi, the spot price si, and the random futures price F̃i,i+1,

while the value function approximation in the left hand side of (13) is a function of only xi and

si. Therefore, the first expectation term in (13), that is, E [·|si, F0,i+1], makes the value function
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approximation φi(xi, si) computable. Our analysis in this section sheds additional light on the role

played by this expectation.

To analyze SADP, we formulate the following math program, which we label the Storage Math

Program (SMP):

SMP: min
φ

∑
i∈I,xi∈XD,si∈FD

i,i

φi(xi, si) (14)

s.t. φi(xi, si) ≥ E
[

max
a∈A(xi)

r(a, si) + δE
[
φi+1(xi − a, s̃i+1)|F̃i,i+1

]
|si, F0,i+1

]
,

∀i ∈ I, (xi, si) ∈ XD ×FDi,i, (15)

φN (xN , sN ) = 0,∀xN ∈ XD. (16)

The SMP decision variables are the terms φi(xi, si), which are constrained by (15) and (16). SMP

is analogous to the equivalent linear programming version of an MDP (Puterman 1994, §6.9).

Proposition 4.1 states that solving SMP is equivalent to solving SADP.

Proposition 4.1. An optimal solution to SMP solves SADP.

Proof. There is a single constraint (15) for each triple (i, xi, si). We claim that this constraint holds

as an equality in an optimal solution to SMP. Fix an optimal solution φ∗i (xi, si) to SMP and suppose

our claim is not true. Then, there exists a triple (i, xi, si) such that φ∗i (xi, si) is strictly greater

than the right hand side of (15) evaluated at such an optimal solution. Since the variable φi(xi, si)

appears only in one constraint in the left hand side of (15) and this variable has a positive coefficient

in the right hand side of each of the stage i− 1 constraints (15) in which it appears, it is possible to

reduce the value of this variable strictly below φ∗i (xi, si) while maintaining feasibility. However, this

also reduces the claimed optimal value of the SMP objective function, since the decision variable

φi(xi, si) has a coefficient equal to 1 in this objective function. This contradicts the optimality of

φ∗i (xi, si).

As a next step, we restrict SMP by replacing the constraint set (15) with

φi(xi, si) ≥ max
a∈A(xi)

r(a, si) + δE [φi+1(xi − a, s̃i+1)|Fi,i+1] ,∀i ∈ I, (xi, si, Fi,i+1) ∈ XD ×
i+1∏
j=i

FDi,j .

(17)
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That is, the constraint set (17) is obtained by expanding the first conditional expectation in (15)

and listing the resulting constraints for each futures price Fi,i+1 ∈ FDi,i+1. Finally, we replace the

maximization over AD(x) in (17) by additional constraints for each action a ∈ AD(x) to obtain the

following Optimistic ALP (OALP; the reason for calling this ALP optimistic will become apparent

soon):

OALP: min
φ

∑
i∈I,xi∈XD,si∈FD

i,i

φi(xi, si) (18)

s.t. φi(xi, si) ≥ r(a, si) + δE [φi+1(xi − a, s̃i+1)|Fi,i+1] ,

∀i ∈ I, (xi, si, Fi,i+1) ∈ XD ×
i+1∏
j=i

FDi,j , a ∈ AD(xi), (19)

φN (xN , sN ) = 0, ∀xN ∈ XD. (20)

OALP is an ALP as it can be derived by using the value function approximation φi(xi, si) from

the following linear program, which is equivalent to DDP (Puterman 1994, §6.9):

min
V D

∑
i∈I,xi∈XD,Fi∈FD

i

V D
i (xi, Fi) (21)

s.t. V D
i (xi, Fi) ≥ r(a, si) + δE

[
V D
i+1

(
xi − a, F̃i+1

)
|F ′i
]
,

∀i ∈ I, (xi, Fi) ∈ XD ×FDi , a ∈ AD(xi), (22)

V D
N (xN , FN ) = 0, ∀xN ∈ XD. (23)

The decision variables of the linear program (21)-(23) are the V D
i (xi, Fi) terms. OALP follows from

replacing the variables V D
i (xi, Fi) in (21)-(23) with the variables φi(xi, si) and noticing that the

only futures price relevant to the evolution of F ′i into si+1 is Fi,i+1 (as assumed at the end of §3.3).

The analysis so far yields the following first key insight: SMP and hence SADP are a relaxation

of OALP. That is, the first expectation in SADP has a relaxing role with respect to OALP. We now

show that this relaxation has a beneficial effect. That is, although one could use an optimal OALP

solution for bound computation, this is not advisable.

We start by establishing in Proposition 4.2 that OALP can be equivalently expressed as the
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following Optimistic ADP (OADP):

OADP: φi(xi, si) = max
Fi,i+1∈FD

i,i+1

{
max

a∈AD(xi)
r(a, si) + δE [φi+1(xi − a, s̃i+1)|Fi,i+1]

}
, (24)

∀i ∈ I and (xi, si) ∈ XD ×FDi,i, with φN (xN , SN ) := 0, ∀xN ∈ XD.

Proposition 4.2. The optimal value function of OADP optimally solves OALP.

Proof. OALP is feasible because the optimal value function of OADP, which exists, is a feasible

solution to OALP. Further, an optimal solution to OALP must satisfy (24): Otherwise, at least

one constraint of OALP would not bind, and the optimal OALP objective function value could

be improved by reducing the value of an OALP decision variable without violating feasibility; the

resulting feasible solution would have a lower objective function value than the assumed optimal

objective function value, since all the decision variables have a positive coefficient in the OALP.

This is a contradiction.

OADP has two maximizations: The first over the set FDi,i+1, and the second over the set AD(xi).

The second maximization is analogous to the maximization in DDP. The first maximization implies

that OADP treats the exogenous futures price Fi,i+1 as a choice. This is clearly unrealistic. That is,

OADP relies on the optimistic assumption that a maximizer of the first maximization in (24), that

is, a price Fi,i+1 occurs with probability one in stage i (this explains the “O” in the acronyms OADP

and OALP). To emphasize the undesirable effect of this maximization we show in Proposition 4.3

that, under a mild assumption, the following continuous version of OADP has an unbounded value

function in every state in stages 0 through N − 2:

φi(xi, si) = sup
Fi,i+1∈R+

{
max

a∈A(xi)
r(a, si) + δE [φi+1(xi − a, s̃i+1)|Fi,i+1]

}
, (25)

∀i ∈ I and (xi, si) ∈ X ×R+, with φN (xN , sN ) = 0, ∀xN ∈ X . This is not the case with EDP when

using any reasonable forward curve evolution model, including the multi-maturity Black model (5)-

(6). The mild assumption in Proposition 4.3 is that the distribution of the random variable s̃i+1

conditional on Fi,i+1, s̃i+1|Fi,i+1, is stochastically increasing in Fi,i+1 (see, e.g., Topkis 1998, Lemma

3.9.1 (b)). For example, the multi-maturity Black (1976) model (5)-(6) satisfies this property.
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Proposition 4.3. If the distribution of s̃i+1|Fi,i+1 is stochastically increasing in Fi,i+1 ∈ R+,

∀i ∈ I, then the optimal value function of model (25) is unbounded in every state in stages 0

through N − 2.

Proof. Define (·)+ := max(0, ·). It holds that φN−1(xN−1, sN−1) = (αW sN−1 − cW )+x for all

xN−1 ∈ X , and sN−1 ∈ R+, since φN (xN , sN ) ≡ 0 for all xN ∈ X . At stage N−2 for xN−2 ∈ X \{0}

we have

φN−2(xN−2, sN−2) = sup
FN−2,N−1∈R+

{
max

a∈A(xN−2)
r(a, sN−2) + δE [φN−1(xN−2 − a, s̃N−1)|FN−2,N−1]

}
= sup

FN−2,N−1∈R+

{
max

a∈A(xN−2)
r(a, sN−2)

+αW δ(xN−2 − a)E

[(
s̃N−1 −

cW

αW

)+

|FN−2,N−1

]}

≥ r(0, sN−2) + αW δxN−2 sup
FN−2,N−1∈R+

E

[(
s̃N−1 −

cW

αW

)+

|FN−2,N−1

]
(26)

= αW δxN−2 sup
FN−2,N−1∈R+

E

[(
s̃N−1 −

cW

αW

)+

|FN−2,N−1

]
, (27)

where we obtain (26) by noting that the do nothing decision, a = 0, is feasible in the maximization

in (25), and (27) from r(0, sN−2) = 0. The term E
[(
s̃N−1 − cWαW

)+ |FN−2,N−1

]
is an increasing

function of FN−2,N−1 under the assumption that the distribution of s̃N−1|FN−2,N−1 is stochastically

increasing in FN−2,N−1 (Topkis 1998, Corollary 3.9.1 (a)). It follows that φN−2(xN−2, sN−2) =∞,

for all xN−2 ∈ X \ {0} and sN−2 ∈ R+. To show that φN−2(0, sN−2) =∞ we follow a similar proof

but use a = CI instead of the do nothing action a = 0.

Suppose that our claim is also true for stages i + 1 through N − 2. We conclude by proving

our claim for stage i. Since φi+1(xi+1, si+1) = ∞ for all xi+1 ∈ X and si+1 ∈ R+, it is immediate

that δE [φi+1(xi − a, s̃i+1)|Fi,i+1] = ∞ for all xi ∈ X , a ∈ A(xi), and Fi,i+1 ∈ R+. It follows that

φi(xi, si) =∞ for all xi ∈ X and si ∈ R+.

Consistent with Proposition 4.3, we have observed in computational experiments that a max-

imizer of the first maximization of OADP is typically the largest value in the set FDi,i+1. These

“unlikely” prices, that is, prices in the right tail of the distribution of the random variable F̃i,i+1

conditional on F0,i+1, determine the value function approximation used to estimate lower and upper
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bounds. This unrealistic value function approximation has poor bounding performance.

These observations and Proposition 4.3 suggest the following second key insight: When approxi-

mating DDP with OALP, the role of the relaxing expectation in SADP, that is, the first expectation

in (13), is to eliminate the maximization over the prompt month futures price that is embedded

in the OALP constraints for stages 0 through N − 2. The numerical work of LMS suggests that

the value function of the resulting ADP, that is SADP, has favorable bounding performance, when

coupled with reoptimization for lower bound estimation.

5 The PSR Methodology

Our analysis in §4 shows that (i) SADP is a specific relaxation of OALP, and (ii) not performing

such a relaxation yields value function approximations with poor bounding performance when using

OALP to approximate DDP. In this section, we leverage these insights by developing our PSR

methodology in §5.1. SADP is only one of the ADPs that can be obtained from our PSR approach.

We apply our PSR methodology to derive novel ADPs in §§5.2-5.3; other PSR-based ADPs can be

derived: Online Appendix A presents one such example. We discuss generalizations of our PSR

approach in §5.4.

Our discussion in this section focuses on OALP and a version of OALP obtained from DDP

by using a value function approximation analogous to the one used by OALP. However, our PSR

methodology can be applied to other ALPs obtained from DDP using value function approximations

that are based on different reductions of the exogenous information Fi.

5.1 Main Idea

For concreteness, we focus on OALP. Our PSR methodology includes two steps: (i) Create a

partition of the OALP constraint set into the K sets G1,G2, . . ., and GK ; (ii) replace each constraint

set Gk by a single surrogate constraint in the sense of Glover (1968, 1975); that is, the k-th such

constraint is a non-negative linear combination of the constraints in the set Gk. More specifically,

represent the constraints of set Gk as the system of linear inequalities Akzk ≥ dk. We choose a

compatible vector of non-negative multipliers uk, and replace Gk by the single constraint ukAkzk ≥

ukdk. Clearly, the resulting system of constraints is implied by the OALP constraints, and is thus
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a relaxation of OALP. Optimally solving this relaxation yields a value function approximation that

can be used for bounding purposes, as discussed in §3.2.

We illustrate this approach in §§5.2-5.3. Moreover, our derivation of OALP from SADP in

§4 shows that SADP can be obtained as a PSR of a math program that is equivalent to OALP.

Thus, additional relaxations can be obtained by equivalently reexpressing OALP as an equivalent

nonlinear math program.

5.2 A Single Price PSR and Its Equivalent ADP

In this subsection, we present a natural PSR of OALP and show that it can be formulated as

an equivalent ADP. Each constraint of OALP is defined over the tuple (i, xi, a, si, Fi,i+1). We

partition the constraints of OALP according to the values of (i, xi, a, si); that is, we have K =

|I| × |XD| ×
(∑

xi∈XD |A(xi)|
)
× |FDi,i| sets in this partition, with all the constraints in each one of

these K sets defined for given values of (i, xi, a, si).

Our discussion following 4.3 suggests that the poor bounding performance of OADP is due to its

value function approximation being determined by the largest price FMi,i+1(si) in the set FDi,i+1(si)

of all the prompt month futures prices in FDi,i+1 given the spot price si: F
M
i,i+1(si) := max{Fi,i+1 :

Fi,i+1 ∈ FDi,i+1(si)} (if max{Fi,i+1|Fi,i+1 ∈ FDi,i+1(si)} has multiple optima, we choose as FMi,i+1(si)

any one of its maximizers). Given the pair (xi, si), this suggests that an optimal OALP solution

satisfies as an equality the OALP constraint corresponding to the price FMi,i+1(si) and the optimal

action associated with this price in OADP, that is, the optimal action associated with this price in

the second maximization in (24).

Our first PSR is based on an intuitively likely better choice for this binding constraint. We

choose this constraint to be the one corresponding to the expected prompt month futures price at

time Ti given the spot price in stage i, si, and the maturity Ti+1 futures price in stage 0, F0,i+1. That

is, this price is F̄i,i+1(si) := E[F̃i,i+1|si, F0,i+1]. This price is a likely better choice than FMi,i+1(si) as

it is more “probable” than FMi,i+1(si).

To ensure that the chosen constraint is binding at optimality, we delete from each partition

set identified by (i, xi, a, si) all the constraints corresponding to values of the price Fi,i+1 different

from F̄i,i+1(si). Therefore, the surrogate multipliers are equal to 1 when Fi,i+1 = F̄i,i+1(si) and

to 0 otherwise. If F̄i,i+1(si) 6∈ FDi,i+1(si), then we use as a proxy the value closest to F̄i,i+1(si) in
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FDi,i+1(si).

Applying this PSR to OALP yields the following relaxation of its constraint set:

φi(xi, si) ≥ r(a, si) + δE
[
φi+1(xi − a, s̃i+1)|F̄i,i+1(si)

]
, ∀(i, xi, si) ∈ I × XD ×FDi,i, a ∈ AD(xi). (28)

Since this constraint set is a singleton for each tuple (i, xi, a, si), it is straightforward to observe

that OALP with (19) relaxed by (28) is equivalent to the following ADP:

ADP1: φi(xi, si) = max
a∈AD(xi)

r(a, si) + δE
[
φi+1(xi − a, s̃i+1)|F̄i,i+1(si)

]
, (29)

∀i ∈ I, (xi, si) ∈ XD ×FDi,i, with φN (xN , sN ) := 0, ∀ xN ∈ XD.

It is not hard to show that the optimal value function and an policy of ADP1 share properties

analogous to the ones of EDP stated in Proposition 3.1. In particular, ADP1 has a base-stock

optimal policy. This property provides theoretical support for ADP1 and allows us to compute its

optimal value function more efficiently than using enumeration (see §5 in LMS).

5.3 A Two Price PSR and Its Equivalent ADP

ADP1 computes a value function approximation that in every stage depends only on the spot price,

in addition to inventory. In this subsection, we discuss a richer value function approximation, which

in each stage depends on the spot and prompt month futures prices, in addition to inventory. We

denote φi(xi, si, Fi,i+1) this value function approximation in stage i.

We obtain this value function approximation from a PSR of a version of OALP with decision

variables φi(xi, si, Fi,i+1) and constraints expressed accordingly. Our PSR of this OALP version

is analogous to the one used in §5.2, with the obvious modification that F̄i,i+1(si) is replaced by

F̄i,i+2(si, Fi,i+1) := E
[
F̃i,i+2|si, Fi,i+1, F0,i+2

]
. This yields the following ADP:

ADP2:

φi(xi, si, Fi,i+1) = max
a∈AD(xi)

r(a, si) + δE
[
φi+1(xi − a, s̃i+1, F̃i+1,i+2)|Fi,i+1, F̄i,i+2(si, Fi,i+1)

]
,

∀i ∈ I \ {N − 2, N − 1}, (xi, si, Fi,i+1) ∈ XD ×
i+1∏
j=i

FDi,j , (30)
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φi(xi, si, Fi,i+1) = max
a∈AD(xi)

r(a, si) + δE [φi+1(xi − a, s̃i+1)|Fi,i+1] ,

∀i ∈ {N − 2, N − 1}, (xi, si) ∈ XD ×FDi,i, (31)

φN (xN , sN ) := 0, ∀xN ∈ XD. (32)

It is easy to show that ADP2 shares structural properties comparable to the ones of EDP stated

in Proposition 3.1. As for ADP1, this provides theoretical support for ADP2 and facilitates the

computation of its optimal value function.

5.4 PSR Generalizations

Generalizations of our PSR methodology are possible. Consider OALP. Although the first step in

our approach is restricted to considering partitions of the constraint set of OALP, our relaxation

procedure easily extends to the case when the sets G1,G2, . . ., and GK do not form such a partition.

That is, we could consider surrogate relaxations rather than Partitioned surrogate relaxations.

However, for a general choice of these sets, the resulting relaxed linear/math program may not be

representable as an ADP, that is, a model analogous to ADP1, ADP2, or SADP. Proposition 5.1

provides sufficient conditions for the choice of these sets to yield such an ADP. For ease of exposition,

we state our conditions with reference to OALP, but extensions to ALPs with approximate value

functions based on different reductions of the forward curve are straightforward. We omit the proof

of Proposition 5.1, as it is similar to the proofs of Propositions 3.1 and 4.2. Proposition 5.1 holds

for ADP1 and ADP2 (with OALP modified as stated earlier for ADP2).

Proposition 5.1. If each constraint in each set Gk, k ∈ {1, . . . ,K}, shares the same triple (i, xi, si),

then the linear program resulting from the PSR of OALP based on the sets Gk, k ∈ {1, . . . ,K}, has

an equivalent ADP representation. Further, the resulting ADP shares analogous to the ones stated

in Proposition 3.1.

6 Structural Analysis of the ADP1 and ADP2 Optimal Value

Functions and their Associated Bounds

In this section, we investigate how the optimal value functions of ADP1 and ADP2 relate to the

optimal value function of EDP, and the likely quality of their resulting greedy lower and dual upper
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bounds. For simplicity, we consider versions of ADP1 and ADP2 with continuous price sets. With

a slight abuse of notation, we continue to refer to these ADPs as ADP1 and ADP2.

In the general case, it is easy to show that ADP1 and ADP2 coincide with EDP for problems

with up to two stages (N = 2) and three stages (N = 3), respectively. This may not be true

for an arbitrary number of stages. We thus analyze the easier special case, studied by Secomandi

(2011), in which the storage asset is fast (that is, −CI = CW = x̄) and there are no frictions

(that is, αW = αI = 1 and cW = cI = 0). In this case, Secomandi (2011) shows that EDP

is tractable, since its exact value function can be written as Vi(xi, Fi) = γi(Fi)x̄ + sixi, where

γi(Fi) := (δFi,i+1 − si)
+ +

∑N−2
j=i+1 δ

j−iE
[
(δF̃j,j+1 − s̃j)+|F ′i

]
. That is, this function is linear in

inventory with intercept γi(Fi)x̄ and slope si. An optimal policy thus simply involves a comparison

of the spot price and the discounted prompt month futures price in every stage and state (Secomandi

2011).

Although heuristics are not needed when the storage asset is fast and frictionless, it is insightful

to investigate ADP1 and ADP2 in this restricted case. Proposition 6.1 characterizes the optimal

value functions of ADP1 and ADP2 in this case. We omit the proof of Proposition 6.1 as it follows

from a straightforward induction argument. We define the functions γφi (si) and γφi (si, Fi,i+1) as

follows:

γφi (si) :=
(
δF̄i,i+1(si)− si

)+
+ δE

[
γφi+1(s̃i+1)|F̄i,i+1(si)

]
,

γφi (si, Fi,i+1) := (δFi,i+1 − si)+ + δE
[
γφi+1(s̃i+1, F̃i+1,i+2)|Fi,i+1, F̄i,i+2(si, Fi,i+1)

]
.

Notice that in general the functions γφi (si) and γφi (si, Fi,i+1) are not equal to the function γi(Fi).

Proposition 6.1. When the storage asset is fast and there are no frictions, the ADP1 optimal

value function is φi(xi, si) = γφi (si)x̄ + sixi, ∀i ∈ I and (xi, si) ∈ X × R+, and the ADP2 optimal

value function is φi(xi, si, Fi,i+1) = γφi (si, Fi,i+1)x̄+ sixi, ∀i ∈ I and (xi, si, Fi,i+1) ∈ X × R2
+.

Proposition 6.1 shows that the value function slopes of ADP1, ADP2, and EDP are all equal

for a fast and frictionless storage asset. This implies that in this case using the ADP1 and ADP2

optimal value functions in (8) yields an optimal action. Hence, the corresponding greedy lower

bounds estimated by Monte Carlo simulation are tight. Interestingly, the policy obtained from

solving ADP2, rather than using (8), is also optimal. In contrast, this is not true for ADP1. This
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is because the slope of the ADP1 continuation value function, that is, δE
[
φi+1(·, s̃i+1)|F̄i,i+1(si)

]
is

δE
[
s̃i+1|F̄i,i+1(si)

]
= δF̄i,i+1(si), whereas the one used both by ADP2 and EDP is δE [s̃i+1|Fi,i+1] =

δFi,i+1.

The intercept of the ADP1 and ADP2 optimal value functions do not play a role in determining

an action in (8). Thus, such an intercept does not affect the estimation of a greedy lower bound.

This is also true for the estimation of a dual upper bound, as now explained. For a fast and

frictionless storage asset, Proposition 6.1 implies that the exact dual penalty (9) is

pi(xi, a, Fi+1, F
′
i ) = Vi+1(xi − a, Fi+1)− E

[
Vi+1(xi − a, F̃i+1)|F ′i

]
= (si+1 − Fi,i+1)(xi − a)

+x̄
{

(δFi+1,i+2 − si+1)+ − E
[
(δF̃i+1,i+2 − s̃i+1)+|F ′i

]}
+x̄


N−2∑
j=i+2

δj−i−1E
[
(δF̃j,j+1 − s̃j)+|F ′i+1

]

−
N−2∑
j=i+2

δj−i−1E
[
(δF̃j,j+1 − s̃j)+|F ′i

] . (33)

The analogous dual penalty derived from using the ADP1 optimal value function is

pφi (xi, a, si+1, Fi,i+1) = φi+1(xi − a, si+1)− E
[
φi+1(xi − a, s̃i+1)|F ′i

]
= (si+1 − Fi,i+1)(xi − a)

+x̄
{

(δF̄i+1,i+2(si+1)− si+1)+ − E
[
(δF̄i+1,i+2(s̃i+1)− s̃i+1)+|F ′i

]}
+x̄
{
δE
[
γφi+2(s̃i+2)|F̄i+1,i+2(si+1)

]
−E

[
δE
[
γφi+2(s̃i+2)|F̄i+1,i+2(s̃i+1)

]
|F ′i
]}

. (34)

Comparing (33) and (34) reveals that, in general, they agree only with respect to the slope related

term (si+1−Fi,i+1)(xi− a). A similar statement holds when the dual penalty is specified using the

ADP2 optimal value function. However, the dual upper bounds estimated using the optimal value

functions of ADP1 and ADP2 are tight for the fast and frictionless case, because, conditional on

F ′0, the expectation of the terms that depend on x̄ in (34) is zero.

Although this analysis is specific to the case of no frictions, it has broader implications. For a
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fast storage asset, the greedy lower bounds and dual upper bounds estimated using the ADP1 and

ADP2 optimal value functions are likely to be close to the EDP optimal value function in the initial

stage and state when the frictions are small, which is the case for the crude oil instances that we

consider in §8.4 (small frictions are typical in practice).

7 Computational Complexity

In this section, we discuss the computational complexity of obtaining the ADP1 and ADP2 optimal

value functions, and estimating their corresponding greedy lower and dual upper bounds. This

complexity depends on the specific technique used for discretizing the relevant price sets. Our

computational study in §8 assumes that EDP is formulated using the multi-maturity Black (1976)

price model (5)-(6). We thus discretize this model via Rubinstein (1994) binomial lattices, and

focus our analysis on this discretization approach. However, other discretization methods may be

used, e.g., some of those discussed by Levy (2004, Chapter 12).

Consider ADP1. We obtain the set FDi,i, that is, we discretize R+, by evolving the time 0 futures

price F0,i using a two-dimensional Rubinstein binomial tree. Let mi be the number of time steps

used to discretize the time interval [0, Ti]. Building this lattice results in a set FDi,i with mi + 1

values. This requires O(mi) operations.

We proceed to analyze the complexity of computing the ADP1 optimal value function. At each

stage i, this entails executing the following steps:

Step 1: Determine a probability mass function with support on FDi+1,i+1 for the random variable

s̃i+1|F̄i,i+1(si) for each si ∈ FDi,i;

Step 2: Compute the optimal ADP1 basestock targets for each si ∈ FDi,i;

Step 3: Evaluate φi(xi, si) for all the states (xi, si) ∈ XD ×FDi,i.

In step 1, we evolve a two-dimensional Rubinstein lattice, starting from each F̄i,i+1(si) referred to

as the transition lattice, by using m time steps to discretize the interval [Ti, Ti+1]. Each F̄i,i+1(si)

can be computed in closed-form in O(1) operations under the price model (5)-(6). Each transition

lattice yields a discretization of si+1 with m+ 1 values. Building all the mi transition lattices thus

takes O(mi ·m) operations. To obtain the distribution of s̃i+1|F̄i,i+1(si) with support on FDi+1,i+1,

we project each price si+1 in each transition lattice onto the set FDi+1,i+1 by rounding each price
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si+1 to the closest spot price in FDi+1,i+1. Since the si+1 values in each transition lattice and the

set FDi+1,i+1 are sorted, this projection can be done in a total of O(mi+1 ·m) operations at stage i.

Therefore, the time complexity for step 1 at stage i is O(mi ·m+mi+1 ·m).

Executing step 2 requires performing the maximization in (29) at inventory levels 0 and x̄ with

injection and withdrawal capacities relaxed. This requires O(mi · |XD| ·m) operations. Executing

step 3 also requires O(mi · |XD| ·m) operations. Therefore, computing φi(xi, si) for all the states

(xi, si) ∈ XD × FDi,i in stage i requires O(m · (mi + mi+1 + 2 · mi · |XD|)) operations. Using

m′ := maxi∈Imi, this simplifies to O(m′ · |XD| ·m) operations, since |XD| ≥ 2.

Thus, for an N -stage problem, computing the ADP1 optimal value function requires O(N ·m′ ·

|XD| ·m) operations.

Let ns denote the number of price sample paths used in a Monte Carlo simulation for estimating

a greedy lower bound and dual upper bound. Given the ADP1 optimal value function, a simple

analysis shows that estimating these bounds requires O(ns · N · logm′ + ns · N · |XD| · m) and

O(ns ·N · |XD| · logm′ + ns ·N · |XD|2 ·m) operations (O(logm′) operations are needed by binary

search, which we use when projecting a transition lattice).

For ADP2, we determine the set FDi,i × FDi,i+1 for each stage i using a three dimensional

Rubinstein lattice. We also use three dimensional binomial lattices and projections to obtain

the joint probability mass function of each random pair (s̃i+1, F̃i+1,i+2) conditional on the pair

(Fi,i+1, F̄i,i+2(si, Fi,i+1)) on the support FDi+1,i+1×FDi+1,i+2. An analysis similar to the one for ADP1

shows that we can compute the ADP2 optimal value function in O(N ·m′2 · |XD|2 ·m2) operations

and estimate a greedy lower bound and a dual upper bound in O(ns ·N · logm′ ·m+ns ·N · |XD| ·m2)

and O(ns ·N · |XD| · logm′ ·m+ ns ·N · |XD|2 ·m2) operations, respectively.

The top part of Table 1 summarizes the results of our computational complexity analysis for

ADP1 and ADP2. Estimating dual upper bounds is more costly than estimating greedy lower

bounds. This is due to the computation of the dual value function in (10) at each inventory level

in the set XD and for all the stages in set I given a price sample path P0. Typical values of the

parameters ns, |XD|, and m′ satisfy ns · |XD| ≥ m′. Hence, estimating dual upper bounds is also

more costly operation than computing the optimal value functions of ADP1 and ADP2; for example,

this is the case in our computational experiments discussed in §8.

It is important to emphasize that the computational complexity results of solving our ADPs
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Table 1: Operations count of estimating a greedy lower bound and a dual upper bound with ADP1,
ADP2 and DDP.

ADP1 ADP2

Value Function O(N ·m′ · |XD| ·m) O(N · (m′)2 · |XD| ·m2)

Lower Bound O
(
ns ·N ·

[
logm′ + |XD| ·m

])
O
(
ns ·N ·m ·

[
logm′ + |XD| ·m

])
Upper Bound O

(
ns ·N · |XD| ·

[
logm′ + |XD| ·m

])
O
(
ns ·N · |XD| ·m ·

[
logm′ + |XD| ·m

])
DDP

Value Function O(N · (m′)N · |XD| ·mN )

Lower Bound O
(
ns ·mN ·

[
logm′ + |XD| ·m

])
Upper Bound O

(
ns · |XD| ·mN ·

[
logm′ + |XD| ·m

])
and estimating bounds using their optimal value functions is linear in N , even if we use the multi-

maturity price model (5)-(6), which is equivalent to an N factor model. In contrast, solving DDP

exactly, also using Rubinstein lattices to discretize the price model (5)-(6), and employing the

resulting DDP optimal value function for bound computation requires an exponential number of

operations in N , as summarized in the bottom part of Table 1.

Moreover, we are not aware of any methods to solve EDP exactly in the general case, even

when using a one factor price model rather than the price model (5)-(6) which, as stated above, is

equivalent to an N factor model.

8 Computational Results

In this section, we present our computational results. We discuss our benchmarking instances in

§8.1. We specify the values used for our state space discretization in §8.2. We investigate the

performance of our PSR methodology in §§8.3-8.4. Online Appendix C reports tables that display

all the results discussed in §§8.3-8.4.

Our experiments are based on the following computational setup: A 64 bits PowerEdge R515

with twelve AMD Opteron 4176 2.4GHz processors, of which we used only one, with 64GB of

memory, the Linux Fedora 15 operating system, and the g++ 4.6.1 20110908 (Red Hat 4.6.1-9)

compiler. The SADP results that we report are obtained using the code of LMS run under our

computational setup.
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8.1 Instances

We consider natural gas and crude oil instances. These instances are representative of two common

types of commodity storage encountered in practice. They differ in two aspects. Their first difference

is the type of commodity forward curve. Natural gas consumption exhibits seasonal patterns, which

are reflected in a forward curve with higher prices in the winter months than in the summer months.

In contrast, seasonality in crude oil forward curves is less apparent. Figure 1 illustrates these

forward curves on two sample dates – natural gas and crude oil futures prices are expressed in

dollars per million British thermal units ($/MMBtu) and dollars per barrel ($/bbl), respectively.

The second difference is related to the operational characteristics of the storage facility. Storage

facilities for natural gas can be slow, that is, they can have constrained injection and withdrawal

capacities, −CI < x̄ and/or CW < x̄, even with a monthly review period (the length of time

between two adjacent stages in our ADPs). In contrast, crude oil storage facilities are fast, that is,

−CI = CW = x̄, even with a daily review period (Griffin 2011).
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Figure 1: The natural gas and crude oil forward curves (closing prices on June 1, 2006 and August
31, 2006, respectively).

For natural gas, we use the twelve 24-stage instances of LMS, created using data from the New

York Mercantile Exchange (NYMEX) and the energy trading literature. These instances have a

monthly review period. Each instance is identified by a season, one of Spring, Summer, Fall, and

Winter, and one of three injection and withdrawal capacity pairs, with their labels 1, 2, and 3

denoting a heavy, intermediate, and mild capacity restriction, respectively. These instances are

based on the multi-maturity Black model (5)-(6).
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For crude oil, we create twelve 24-stage instances using historical prices of West Texas Inter-

mediate crude oil futures, which are traded on NYMEX. As for the natural gas instances, each

stage corresponds to a monthly review period, which is consistent with our focus on the value of

a storage asset due to monthly volatility. These instances are defined using the closing forward

curve on the first trading date of each month in 2006. We also use the multi-maturity Black model

(5)-(6) on these instances. We estimate its volatilities and correlation matrix from historical futures

prices observed between 2002 and 2006. These forward curves and the estimated volatilities and

correlation matrix are available in Online Appendix B. We set both the injection and withdrawal

marginal costs, cI and cW , to 0.001$/bbl, and the injection and withdrawal losses, αI and αW , to

zero (Griffin 2011).

We use a risk free interest rate equal to 4.74%, 5.05%, 5.01%, and 4.87% for the Spring, Summer,

Fall, and Winter natural gas instances, respectively, as in LMS, and 4.74% for the crude oil instances,

that is, the minimum of the natural gas risk free interest rates.

8.2 State Space Discretization

Recall that ADP1 and ADP2 are formulated on discretized state and action spaces: XD ×FDi,i and

AD(x) for ADP1, and XD ×FDi,i ×FDi,i+1 and AD(x) for ADP2. Based on the discussion preceding

Proposition 5.1 and this proposition, we obtain XD by discretizing the [0, 1 =: x̄] inventory set X

into 21 equally spaced points for the natural gas instances, as in LMS, and 2 equally spaced points

(0 and 1) for our crude oil instances. Computing the discretized price sets requires choosing values

for the parameters mi and m (see §7). On the natural gas instances, as in LMS, we set mi equal

to 500 and m equal to 20 when solving ADP1, as this facilitates comparing our bounds with those

of LMS. We use the same values for ADP2, but also apply lattice restrictions (Levy 2004) to deal

with the computational burden of discretizing R2
+. Specifically, we restrict each value of the spot

price si ∈ FDi,i to be less than or equal to 4 times the time zero futures price with maturity Ti, F0,i.

This implies a restriction for the values of the prompt month futures prices in each set FDi,i+1. This

approach, standard in computational finance, is effective in our application: Our estimated lower

and upper bounds change by less than 0.2% when we add this restriction, and we obtain an order

of magnitude speed up. When computing reoptimized lower bounds (see §3.2) we use a coarser

discretization by setting mi = m = 5, as in LMS. On the crude oil instances, we also set m = 20 but
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we consider a range of values for mi, because we observed that the choice of this parameter value

affected the quality of the estimated bounds, in particular the dual upper bound. Reoptimization

is performed under the same setting used for natural gas.

8.3 Results on the Natural Gas Instances

We now compare the bounding performance of ADP1, ADP2, and SADP on the natural gas in-

stances. As in LMS, we use 10, 000 sample paths to obtain all the reported greedy lower and dual

upper bound estimates in state (0, F0) in stage 0. The numerical results in LMS suggest that the

dual upper bound estimated using the SADP optimal value function is almost tight on the Spring,

Summer, and Fall instances, but looser on the Winter instances. Thus, improvements on these up-

per bounds may be possible only on the Winter instances. The SADP based lower bound estimates

obtained without reoptimization are fairly loose on all the considered instances; their reoptimized

versions become almost tight on the Spring, Summer, and Fall instances, but not on the Winter

instances, where there is an optimality gap of up to 6%. Therefore, it may be possible to improve

on the SADP based lower bound estimates without reoptimization on all the instances and their

reoptimized versions on the Winter instances.

Dual Upper Bounds. We denote by UBS, UB1, and UB2 the dual upper bound estimates

associated with SADP, ADP1, and ADP2, respectively. Figure 2 reports UBS and UB1 as percent-

ages of UB2, as UB2 is tighter than both UBS and UB1. The error bars in this figure indicate the

standard errors of UBS and UB1 normalized by UB2. UBS and UB1 match on all the instances

after accounting for sampling variability (the UBS and UB1 standard errors vary between 0.36%

and 0.72% and 0.36% and 0.87% of UB2, respectively; the UB2 standard errors range from 0.30%

to 0.65% of UB2). Remarkably, UB2 is smaller than both UBS and UB1 by an average of 2.82% on

the Winter instances, while its improvement is more contained on the other instances (as expected).

Greedy Lower Bounds. We denote by LBS, LB1, and LB2 the lower bound estimates obtained

using SADP, ADP1, and ADP2, respectively (LB1 and LB2 are greedy lower bound estimates; as

in LMS, LBS is the estimated value of the SADP optimal policy). Figure 3 shows these estimates

normalized by UB2. The error bars in this figure indicate the standard errors of these estimates

relative to UB2. LBS and LB1 are within standard error of each other on the Spring, Summer, and

Fall instances, while LB1 is weaker than LBS by no more than 2.44% of UB2 on the Winter instances
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Figure 2: The estimated upper bounds on the natural gas instances.

(the LBS and LB1 standard error ranges are 0.93-1.68% and 0.97-1.43% of UB2, respectively).

Interestingly, LB2 outperforms both LBS and LB1 on all the instances: LB2 improves on LBS by

2-3.36% across the Spring, Summer, and Fall instances, and by 6.72-8.43% on the Winter instances.

The improvements of LB2 on LB1 are similar on the Spring, Summer, and Fall instances, but are

larger on the Winter instances. The standard errors of LB2 vary between 0.92% and 1.62% of UB2.

These results suggest that ADP2 is a fundamentally better model than both SADP and ADP1,

with maximum suboptimality gaps of 3.03% of UB2 on the Spring, Summer, and Fall instances,

and 9.03% of UB2 on the Winter instances. In contrast, these suboptimalities are 5.77% and 17.46%

for SADP, and 6.11% and 19.89% for ADP1.

We denote by RLBS, RLB1, and RLB2 the estimates of the reoptimized versions of LB2, LB1,

and LB2, respectively. Figure 4 displays these reoptimized lower bound estimates relative to UB2.
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Figure 3: The estimated lower bounds on the natural gas instances (no reoptimization).

The standard errors of RLBS, RLB1, and RLB2 are spread between 0.94% and 1.73% of UB2.

RLBS, RLB1, and RLB2 are almost tight on the Spring, Summer, and Fall instances, which implies

that their respective greedy policies are essentially optimal on these instances (different from the

policy associated with LBS, the one corresponding to RLBS is of the greedy type). RLB2 is slightly

better than RLBS and RLB1 on the Winter instances, with a maximum suboptimality gap of 2.38%

of UB2 compared to 3.51% for RLBS and 2.58% for RLB1. Further, LB2 is worse than RLB2 by

a maximum of 6.65% of UB2 on all the instances, while LBS is below RLBS by 2.29-13.94% and

LBS falls short of RLB1 by 2.07 and 17.31% on all the instances. These figures suggest that

reoptimization is less critical for ADP2 than it is both for SADP and ADP1.

CPU Times. The run times required to solve ADP1 range from 0.11 to 0.12 CPU seconds,
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Figure 4: The estimated reoptimized lower bounds on the natural gas instances.

while the ones for SADP are between 120.16 and 121.85 CPU seconds. Thus, solving ADP1 is at

least 1,000 times faster than solving SADP on all the instances. The ADP1 overall run times, that

is, also including the CPU times for bound estimation, are spread between 10.21 and 17.16 CPU

seconds. The SADP overall run times are between 271.83 and 313.59 CPU seconds. Therefore, the

overall ADP1 CPU run time is at least an order of magnitude smaller than the one of SADP on all

the instances.

The CPU times needed to solve ADP2 vary from 36.20 to 52.56 CPU seconds. The ADP2 overall

run times (with restricted lattices) range from 153.73 to 225.2 CPU seconds, which is 23.90% to
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47.5% less than the SADP CPU times. Thus, using ADP2 we are able to compute improved bounds

in a faster fashion compared to SADP. However, solving ADP2 is 12 to 16 times slower than solving

ADP1.

Computing RLBS takes between 543.5 and 619.23 CPU seconds, while this range for RLB1

is 89.75-92.60 CPU seconds, that is, roughly 6 times shorter. This run time range for RLB2 is

1,222.40-1,247.53 CPU seconds, which is roughly twice and one order of magnitude larger than the

RLBS and RLB1 run time ranges.

8.4 Results on the Crude Oil Instances

We investigate the bounding performance when using ADP1 on the crude oil instances. We do not

consider ADP2 due to the near optimal bounding performance when using ADP1 (we have however

verified using ADP2 also yields near optimal bounds, but the ADP2 computational requirement is

higher than the one of ADP1). As in the natural gas instances, we use 10, 000 sample paths to

estimate our greedy lower and dual upper bounds on the value of storage in state (0, F0) in stage

0. Given that our crude oil instances involve a fast storage asset with small frictions, from our

discussion in §6, we expect almost tight greedy lower bounds and dual upper bounds estimates.

Without reoptimization, we consider the following values for mi: 500, 1,000, 10,000, and 20,000.

Dual Upper Bounds. Across instances, the range of the percentage ratios of UB1 for mi

equal to 500, 1,000, and 10,000, respectively, and UB1 for mi equal to 20, 000 is 108.81-114.53%,

104.50-107.79%, and 100.20-100.34% (the range of the UB1 standard error for mi equal to 500,

1,000, 10,000, and 20,000 as a percentage of UB1 for mi equal to 20, 000 is 0.31-0.44%, 0.30-0.42%,

0.30-0.40%, and 0.30-0.40%, respectively). This shows that the choice of the value of mi is important

to improve the quality of UB1 on these instances.

Greedy Lower Bounds. LB1 normalized by UB1 for mi equal to 20, 000 is at least 97.78%,

97.81%, 98.92%, and 99.15% for mi equal to 500, 1,000, 10,000, and 20,000, respectively (the range

of these LB1 standard error as a percentage of this UB1 is 1.12-1.69%, 1.13-1.68%, 1.12-1.68%,

and 1.12-1.68%). Thus, increasing the value of mi from 500 to 20,000 slightly improves LB1 on

these instances. RLB1 normalized by UB1 for mi equal to 20, 000 is at least 99.28% across all our

crude oil instances, with the RLB1 standard error spread between 1.12% and 1.68% of this UB1.

Although LB1 for the considered mi values is almost tight, reoptimization can help.
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CPU Times. Across the considered mi values, solving ADP1 requires between 0.01 and 0.14

CPU seconds, and the overall ADP1 run time is spread between 6.10 and 7.37 CPU seconds.

Computing RLB1 requires about 28 CPU seconds.

9 Conclusions

Real option management of commodity storage assets is an important practical problem that,

in general, gives rise to an intractable MDP when using high dimensional models of commodity

forward curve evolution. We propose a novel approximate dynamic programming methodology,

based on partitioned surrogate relaxations of approximate linear programs, to obtain value function

approximations to this MDP. Application of our approach yields two new ADPs, as well as the

known SADP as a special case. We test our ADPs on existing natural gas and new crude oil storage

instances.

Our focus in this paper is on commodity storage. However, our PSR methodology is potentially

relevant for the approximate solution of other real and financial option valuation and manage-

ment problems (see the discussion in §1). It would be interesting to apply our methodology to

such problems, also using different types of forward curve evolution models and/or value function

approximations. Moreover, in this paper we apply our PSR approach using exogenously chosen

partitions and multipliers. An interesting direction for additional research would be optimizing (in

some sense) the partitions and surrogate multipliers of our PSR methodology. This may improve the

quality of the greedy lower and dual upper bounds obtained with the value function approximations

of the resulting ALPs/ADPs.
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Online Appendix

A Another PSR-based ADP

Another PSR of OALP can be derived by using the same partition sets used to derive ADP1 (see

§5 for details). However, we use the probabilities Pr(Fi,i+1|si, F0,i+1) as multipliers. That is, for

a partition set identified by (i, xi, a, si) we multiply each constraint corresponding to an element

(i, xi, a, si, Fi,i+1) in the partition by Pr(Fi,i+1|si, F0,i+1). Similar to ADP1, we apply this PSR of

OALP and obtain the ADP

φi(xi, si) = max
a∈AD(xi)

r(a, si) + δE
[
E
[
φi+1(xi − a, s̃i+1)|F̃i,i+

]
|si, F0,i+1

]
, (35)

∀i ∈ I and (xi, si) ∈ XD × FDi,i, with φN (xN , sN ) = 0, ∀xN ∈ X . This ADP differs from ADP1,

ADP2, and SADP.
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B Crude Oil Forward Curves and Calibration Results

This section includes the price information for our crude oil instances. Tables 2-3 report the NYMEX

forward curves; Tables 4 and 5-7 report the volatilities and the correlation matrix, estimated on the

NYMEX closing crude oil futures prices observed from 2002 to 2006.

Table 2: Crude oil forward curves ($/bbl) on the first trading day of each month from January to
June 2006.

Months to Maturity January February March April May June

0 63.11 64.71 62.01 66.07 73.75 70.11
1 63.14 66.56 61.97 66.74 73.70 70.34
2 63.99 67.42 63.62 68.04 75.22 71.23
3 64.48 68.02 64.66 68.79 75.94 71.86
4 64.84 68.47 65.43 69.20 76.40 72.37
5 65.14 68.81 66.02 69.42 76.70 72.77
6 65.38 69.06 66.49 69.56 76.90 73.08
7 65.59 69.24 66.88 69.66 77.00 73.29
8 65.77 69.37 67.18 69.74 77.01 73.42
9 65.91 69.47 67.43 69.79 76.97 73.49
10 66.02 69.55 67.63 69.83 76.91 73.50
11 66.10 69.61 67.82 69.85 76.81 73.46
12 66.17 69.62 67.96 69.86 76.69 73.38
13 66.22 69.61 68.08 69.83 76.54 73.26
14 66.26 69.59 68.15 69.80 76.36 73.13
15 66.29 69.55 68.20 69.74 76.20 72.99
16 66.30 69.50 68.21 69.68 76.02 72.84
17 66.29 69.45 68.22 69.60 75.84 72.66
18 66.24 69.37 68.22 69.52 75.66 72.48
19 66.15 69.27 68.20 69.43 75.45 72.27
20 66.02 69.15 68.16 69.34 75.23 72.06
21 65.88 69.00 68.11 69.22 75.01 71.86
22 65.73 68.85 68.05 69.11 74.78 71.63
23 65.56 68.71 68.00 68.99 74.55 71.40
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Table 3: NYMEX Crude oil forward curves ($/bbl) on the first trading day of each month from
July to December 2006.

Months to Maturity July August September October November December

0 75.20 74.93 69.24 60.96 58.64 63.43
1 75.19 74.91 69.19 61.03 58.71 63.43
2 76.16 76.18 70.37 62.32 60.55 65.01
3 76.79 76.95 71.21 63.36 61.84 66.07
4 77.23 77.51 71.94 64.23 62.84 66.83
5 77.57 77.97 72.54 64.95 63.64 67.46
6 77.80 78.32 73.03 65.55 64.28 67.99
7 77.93 78.57 73.42 66.07 64.82 68.43
8 78.00 78.75 73.74 66.51 65.29 68.83
9 77.99 78.85 73.97 66.88 65.69 69.16
10 77.94 78.88 74.15 67.18 66.04 69.44
11 77.84 78.86 74.28 67.42 66.35 69.68
12 77.72 78.82 74.36 67.61 66.61 69.89
13 77.59 78.76 74.41 67.77 66.82 70.08
14 77.46 78.66 74.44 67.89 67.01 70.23
15 77.32 78.54 74.44 67.97 67.16 70.34
16 77.16 78.42 74.40 68.04 67.29 70.42
17 77.00 78.26 74.35 68.07 67.39 70.49
18 76.80 78.09 74.28 68.10 67.48 70.54
19 76.59 77.92 74.18 68.10 67.55 70.57
20 76.38 77.75 74.06 68.08 67.60 70.57
21 76.17 77.56 73.94 68.02 67.64 70.57
22 75.96 77.36 73.77 67.96 67.67 70.54
23 75.75 77.17 73.61 67.88 67.66 70.51
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Table 4: Estimated crude oil futures price volatilities.

Months to Maturity Volatility

1 0.343
2 0.317
3 0.298
4 0.284
5 0.272
6 0.263
7 0.255
8 0.248
9 0.242
10 0.236
11 0.231
12 0.227
13 0.223
14 0.220
15 0.216
16 0.213
17 0.210
18 0.208
19 0.206
20 0.204
21 0.202
22 0.202
23 0.199

Table 5: Estimated crude oil futures price correlation submatrix 1.

Maturity
Maturity 1 2 3 4 5 6 7 8 9 10 11 12

1 1.000 0.974 0.963 0.954 0.944 0.934 0.925 0.916 0.908 0.900 0.892 0.883
2 1.000 0.995 0.989 0.982 0.974 0.966 0.958 0.951 0.944 0.936 0.928
3 1.000 0.998 0.993 0.988 0.982 0.975 0.969 0.963 0.956 0.948
4 1.000 0.999 0.995 0.991 0.986 0.980 0.975 0.969 0.963
5 1.000 0.999 0.996 0.992 0.988 0.984 0.979 0.973
6 1.000 0.999 0.996 0.994 0.990 0.986 0.982
7 1.000 0.999 0.997 0.995 0.992 0.988
8 1.000 0.999 0.998 0.995 0.992
9 1.000 0.999 0.998 0.996
10 1.000 0.999 0.998
11 1.000 1.000
12 1.000
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Table 6: Estimated crude oil futures price correlation submatrix 2.

Maturity
Maturity 13 14 15 16 17 18 19 20 21 22 23

1 0.873 0.865 0.855 0.847 0.837 0.828 0.818 0.808 0.799 0.785 0.782
2 0.919 0.911 0.902 0.893 0.884 0.875 0.865 0.856 0.847 0.832 0.831
3 0.940 0.932 0.924 0.916 0.907 0.899 0.889 0.880 0.872 0.857 0.856
4 0.956 0.948 0.941 0.934 0.926 0.918 0.909 0.900 0.892 0.878 0.878
5 0.967 0.961 0.954 0.947 0.940 0.933 0.925 0.917 0.909 0.895 0.896
6 0.976 0.971 0.965 0.959 0.953 0.946 0.938 0.931 0.924 0.910 0.911
7 0.983 0.979 0.973 0.968 0.963 0.956 0.950 0.943 0.936 0.923 0.924
8 0.989 0.985 0.980 0.976 0.970 0.965 0.959 0.952 0.946 0.933 0.935
9 0.993 0.989 0.985 0.981 0.977 0.972 0.966 0.960 0.955 0.942 0.944
10 0.996 0.993 0.990 0.986 0.982 0.978 0.973 0.967 0.962 0.950 0.953
11 0.998 0.996 0.993 0.991 0.987 0.983 0.979 0.974 0.969 0.957 0.960
12 0.999 0.998 0.996 0.994 0.991 0.988 0.984 0.979 0.975 0.963 0.967

Table 7: Estimated crude oil futures price correlation submatrix 3.

Maturity
Maturity 13 14 15 16 17 18 19 20 21 22 23

13 1.000 0.999 0.998 0.997 0.994 0.991 0.988 0.984 0.981 0.969 0.973
14 1.000 0.999 0.998 0.997 0.994 0.992 0.988 0.985 0.974 0.979
15 1.000 1.000 0.998 0.997 0.995 0.992 0.989 0.978 0.983
16 1.000 1.000 0.998 0.997 0.995 0.992 0.981 0.987
17 1.000 1.000 0.998 0.997 0.995 0.984 0.991
18 1.000 1.000 0.998 0.997 0.987 0.993
19 1.000 1.000 0.999 0.989 0.996
20 1.000 1.000 0.990 0.998
21 1.000 0.991 0.999
22 1.000 0.991
23 1.000
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C Detailed Computational Results

This section reports tables with the detailed numerical results of our estimated lower and upper

bounds with SADP, ADP1, and ADP2, and the CPU times required to compute them. These

results supplement the discussion in §8. The results for the natural gas and crude oil instances are

reported in §C.1 and §C.2, respectively.

C.1 Results for the Natural Gas Instances

This subsection contains the following tables with the numerical results for the natural gas instances

(the labels of these instances are from LMS):

• Table 8 reports UB2.

• Table 9 compares the lower bound estimates LBS, LB1, and LB2 and the dual upper bound

estimates UBS, UB1, and UB2.

• Table 10 compares the reoptimized greedy lower bound estimates RLBS, RLB1, and RLB2.

• Table 11 reports the overall CPU seconds for SADP, ADP1, and ADP2 (the “no reoptimiza-

tion” part of this table), and the CPU seconds required to estimate the reoptimized greedy

lower bounds RLBS, RLB1, and RLB2 (the “reoptimization” part of this table).

Table 8: UB2 values for the natural gas instances.

Instance UB2

24-Sp-1 4.20
24-Sp-2 5.26
24-Sp-3 5.72

24-Su-1 4.70
24-Su-2 6.26
24-Su-3 6.78

24-Fa-1 4.14
24-Fa-2 6.38
24-Fa-3 7.50

24-Wi-1 1.80
24-Wi-2 2.48
24-Wi-3 2.85
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Table 9: LBS, LB1, LB2, UBS, and UB1 normalized by UB2 for the natural gas instances.

Instance LBS/UB2 % LB1/UB2 % LB2/UB2 % UBS/UB2 % UB1/UB2 %

24-Sp-1 94.23 93.89 96.97 101.20 101.32
24-Sp-2 95.35 95.38 98.72 101.43 101.44
24-Sp-3 96.26 96.43 99.17 101.20 101.14

24-Su-1 94.99 94.52 97.35 101.18 101.28
24-Su-2 97.11 97.29 99.40 101.02 101.04
24-Su-3 97.72 98.19 99.72 100.87 100.87

24-Fa-1 95.81 95.72 98.46 101.23 101.37
24-Fa-2 97.39 97.49 99.94 100.98 101.03
24-Fa-3 98.12 98.29 100.12 100.77 100.78

24-Wi-1 82.54 80.11 90.97 102.97 103.02
24-Wi-2 88.56 87.35 96.69 102.81 102.79
24-Wi-3 91.50 90.28 98.22 102.70 102.61

Table 10: RLBS, RLB1, and RLB2 normalized by UB2 for the natural gas instances.

Instance RLBS/UB2 % RLB1/UB2 % RLB2/UB2 %

24-Sp-1 99.55 99.55 99.57
24-Sp-2 99.61 99.61 99.46
24-Sp-3 99.70 99.67 99.59

24-Su-1 99.77 99.75 99.75
24-Su-2 100.32 100.34 100.33
24-Su-3 100.26 100.26 100.20

24-Fa-1 100.18 100.16 100.10
24-Fa-2 100.64 100.64 100.64
24-Fa-3 100.40 100.36 100.38

24-Wi-1 96.49 97.42 97.62
24-Wi-2 99.12 98.32 99.25
24-Wi-3 99.04 98.53 99.10

Table 11: CPU seconds for SADP, ADP1, and ADP2 for the natural gas instances.

No Reoptimization Reoptimization

Instance SADP ADP1 ADP2 SADP ADP1 ADP2

24-Sp-1 308.87 10.23 168.58 596.44 92.29 1247.53
24-Sp-2 303.26 14.50 210.09 558.13 90.66 1228.55
24-Sp-3 298.54 17.16 223.33 543.59 89.94 1230.67

24-Su-1 278.67 10.21 162.23 585.07 91.98 1237.97
24-Su-2 273.26 14.51 198.65 556.09 90.69 1233.16
24-Su-3 271.83 17.11 219.73 561.30 89.78 1226.46

24-Fa-1 292.68 10.21 153.73 610.73 92.60 1233.5
24-Fa-2 294.43 14.54 186.92 614.64 90.54 1233.6
24-Fa-3 300.79 17.15 208.85 566.34 90.02 1222.4

24-Wi-1 297.97 10.24 169.38 619.23 92.12 1232.90
24-Wi-2 313.59 14.60 205.39 578.15 90.69 1229.73
24-Wi-3 295.97 17.14 225.20 572.63 89.75 1224.72
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C.2 Results for the Crude Oil Instances

This subsection contains the following tables with the numerical results for our crude oil instances

(labeled Jan through Dec, which abbreviate the months January through December):

1. Table 12 reports UB1 for mi equal to 20, 000, which we label UB1∗.

2. Table 13 reports the greedy lower bound estimate LB1 and the dual upper bound estimate

UB1 as a percentage of UB1∗.

3. Table 14 reports the reoptimized greedy lower bound estimate RLB1 as a percentage of UB1∗.

4. Table 15 reports the overall CPU seconds for ADP1 when mi equals 500, 1,000, 10,000,

and 20,000, respectively (the “no reoptimization” part of this table), and the CPU seconds

required to estimate the reoptimized greedy lower bound RLB1 (the “reoptimization” part of

this table).

Table 12: UB1∗ for the crude oil instances.

Instance UB1∗

Jan 5.53
Feb 7.29
Mar 7.65
Apr 6.32
May 6.09
Jun 5.72
Jul 5.82
Aug 6.63
Sep 7.17
Oct 7.96
Nov 9.19
Dec 8.17
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Table 13: LB1 for mi equal to 500, 1000, 10,000, and 20,000, and UB1 mi equal to 500, 1000, 10,000
normalized by UB1∗ for the crude oil instances.

LB1/UB1∗% UB1/UB1∗%
mi mi

Instance 500 1,000 10,000 20,000 500 1,000 10,000

Jan 98.34 97.81 98.92 99.63 114.53 107.64 100.34
Feb 98.73 98.05 99.25 99.15 111.37 105.83 100.26
Mar 99.43 99.50 99.37 99.92 110.64 105.19 100.18
Apr 97.78 98.39 99.02 98.89 112.87 106.44 100.20
May 98.49 98.54 99.49 99.63 113.80 106.78 100.23
Jun 98.81 98.22 99.37 99.56 114.49 107.40 100.31
Jul 98.92 98.43 99.44 99.63 114.98 107.79 100.33
Aug 98.63 98.35 99.58 99.51 113.56 107.00 100.29
Sep 98.71 98.21 99.27 99.74 112.30 106.25 100.23
Oct 99.34 99.70 99.78 100.14 110.27 105.19 100.22
Nov 99.12 99.90 99.95 99.96 108.81 104.50 100.21
Dec 98.98 99.48 99.53 100.00 110.48 105.23 100.24

Table 14: RLB1 normalized by UB1∗ for the crude oil instances.

Instance RLB1/UB1∗ %

Jan 99.46
Feb 99.39
Mar 99.80
Apr 99.32
May 99.28
Jun 99.58
Jul 99.52
Aug 99.43
Sep 99.86
Oct 100.07
Nov 100.02
Dec 100.09
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Table 15: CPU seconds for ADP1 for the crude oil instances.

No Reoptimization
mi

Instance 500 1,000 10,000 20,000 Reoptimization

Jan 6.13 6.25 6.82 7.05 28.19
Feb 6.15 6.40 6.85 7.07 28.29
Mar 6.15 6.32 6.79 7.11 28.40
Apr 6.16 6.30 6.78 7.07 28.04
May 6.17 6.26 6.84 7.11 28.17
Jun 6.11 6.34 6.72 7.02 28.16
Jul 6.21 6.30 6.75 7.07 28.23
Aug 6.12 6.40 6.86 7.10 28.02
Sep 6.11 6.31 6.76 7.07 28.38
Oct 6.10 6.29 6.81 7.07 28.68
Nov 6.10 6.29 6.79 7.04 28.39
Dec 6.22 6.26 6.88 7.08 28.52
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