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Abstract

Two firms face market development uncertainty in a continuous-time investment model. They non-

cooperatively choose when to invest in a lumpy capacity before competing in the market stage. The

combined impact on equilibrium outcomes of the firms’ relative ability to detect the new demand (or

“alertness”, Kirzner (1973)) and of a persistent first-mover advantage is characterized. With perfect alert-

ness, equilibrium investments are always sequential. There is rent-equalization, with even more dissipation

than without a first-mover advantage, which thus reduces both firms’ ex-ante value. Limited alertness,

as formalized by firm-specific investment trigger constraints, leads to qualitatively different outcomes that

contrast with the known results in the literature. With nonzero probability simultaneous entry can occur,

otherwise a firm maximizes value by investing late, though before its rival. A constraint level can always

be defined that is so weak as to be slack in the benchmark scenario (perfect alertness and no first-mover

advantage), and still result in more equilibrium value to the leader if it benefits from the market stage

advantage. With more demand volatility, the impact of limited alertness on the entry sequence is less

likely, and the leader-follower differential value decreases to the benefit of the less alert firm, although it

enters even later.
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1 Introduction

Business circumstances in which rival firms contemplate entry into a new and growing market are

prevalent. In most cases, the installation of production facilities is needed as a first step, before

operations can start. Investments are typically lumpy and rarely recoverable. When demand is

fluctuating and changes are uncertain, the timing of entry impacts the expected value of operations.

An early investment is risky as demand may remain relatively low for a long time. On the other hand,

a firm forgoes operating profits if it postpones entry to a distant period.

Firms’ long-run investment choices are not made in isolation. There is competition for the lead

position when it pays to start operations before others. This occurs if early entry results in monopoly

profits for a while, before demand reaches a sufficiently high level that encourages new entrants. Firms

also interact strategically in the short-run. Once more than one firm has entered, the formation of

prices is a non-cooperative outcome. Each firm’s ex-ante investment value thus depends on the nature

of competition in the product market.

1.1. Connections to the theoretical literature

The continuous-time setup with demand uncertainty considered in this paper builds on several

recent contributions to the theoretical literature. They all use a strategic real options methodology

to study investment strategies when firms interact in a long-run investment game before competing

in the market. More specifically, an extension to a stochastic environment of Fudenberg and Tirole

(1985)’s analysis of technology adoption is introduced by Huisman and Kort (1999), where firms are

already active on a market with uncertain demand. Smit and Trigeorgis (2004) discuss the impact

of a marginal cost asymmetry in the new market case, where two firms must investing in productive

assets to enter. In Kort and Pawlina (2006), the cost of investments is different across the two firms,

which already compete before any investment occurs, and the effect of this difference on the nature of

equilibrium is characterized. Mason and Weeds (2009) investigate the impact on the entry timing of

a difference in flow profits to the benefit of the first entrant. In Boyer, Lasserre, and Moreaux (2011),

in order to enter the firms must invest in lumpy capacities which can constrain quantity choices

in the product market stage. In all these papers, among others, the firms are aware of the profit

opportunities at all points in time.1 For some parameter values a preemption equilibrium exists, in

which investments occur sequentially with probability one. In the new market case, competition for

being the first entrant always implies rent dissipation and equalization (the firms’ expected value is

the same in equilibrium), and the probability of simultaneous entry is zero.

1For recent surveys of game theoretic real options models, see Boyer, Gravel, and Lasserre (2010), Azevedo and

Paxson (2011), and Chevalier-Roignant, Flath, Huchzermeier, and Trigeorgis (2011).
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The objective of this paper is to compare the timing of investments and the value of firms across

two scenarios that have been considered separately in the literature. In the first scenario, as soon

as two firms hold finite production capacities they compete by choosing quantities simultaneously, so

that their instantaneous profits are equal (as in Boyer, Lasserre, and Moreaux, 2011). In the second

scenario, the firm which leads the entry process is also a first mover in the market subgame, and

thereby earns higher instantaneous profits (as in Mason and Weeds, 2009). In both scenarios, firm-

specific investment trigger constraints are introduced to formalize the limited ability of entrepreneurs

to detect new profit opportunities in the early stage of the market development process.

The relative relevance of the Cournot and Stackelberg scenarios is discussed by Smit and Trigeorgis

(2004) in the context of a continuous-time investment model. They see more merits in the former

specification, on the grounds that, in the Stackelberg case, one of the two firms commits itself by

moving earlier than its opponent. By doing so, the large quantity it chooses is not the same as with

simultaneous moves, as it is not a best reply to the quantity chosen by the second mover. Then, if the

market subgame is repeated, with firms making simultaneously quantity choices in all periods that

follow the two initial sequential moves, the leader has an incentive to reduce its output. This reasoning

holds when the leader cannot commit in some way to keep selling the large market share, and consumers

are assumed to buy from one or the other supplier indifferently at all points in time, independently

of the entry sequence of firms.2 This however does not hold when brand loyalty, consumption habits,

or network effects imply that clients are reluctant to switch to a new seller, or new consumers value

an existing customer base. In that case, the consumers who started buying from the first entrant

may keep doing so repeatedly, and a large share of new buyers can be more attracted by the leading

firm than by a follower. In the present paper the Stackelberg specification refers to a large class of

circumstances in which the first entrant benefits from such a persistent advantage.3

In the analytical framework that follows, the specification that firms invest in lumpy production

capacities, as opposed to an abstract project, offers an explicit foundation to possible rankings of

instantaneous profit levels, as earned in the market stage by each firm behaving as a monopolist, a

Cournot duopolist, or a Stackelberg leader/follower. The rankings depend on the status of capacity

constraints resulting from the firms’ previous choices in the investment stage.

While several papers characterize the effect of introducing “time-to-build” after a firm has decided

to invest in productive assets (Grenadier, 2000, and Pacheco-de-Almeida and Zemsky, 2003), this

paper focuses on firm differences in the ability to detect new profit opportunities before an investment

occurs. The fact that demand is taking off is not obvious at early stages, and entrepreneurs are likely

2For a discussion on time consistency and commitment issues in a Stackelberg model, see Fudenberg and Tirole (1991,

pp. 75-77).
3See Cottrell and Sick (2002), and Kim and Lee (2011) for examples.
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to overlook it until a relatively high level is reached. The ability to detect a new market opportunity

relates to the “alertness” of investors, as coined by Kirzner (1973, 1979, 1997). He defines the role

of an entrepreneur as essentially that of being “alert to opportunities created (...) by independently

initiated changes” (1997, p. 5). Indeed there is no reason to assume that investors are equally able

to detect a burgeoning demand. Barney, Wright, and Ketchen (2001) characterize the relative ability

of firms to be “more alert to changes in their competitive environment” than competitors as a source

of sustained competitive advantage (p. 631). Foss and Klein (2009, p. 1) see entrepreneurs as not

all equally “alert to a new product” and in their propensity to respond to this opportunity “before

others”.

Therefore, an important specification of the model is that it includes firm-specific investment

trigger constraints. They allow for a departure from the standard (and usually implicit) assumption

that firms are perfectly alert, that is capable of seizing the opportunity to invest with no delay, and

at any point in time, from the very beginning of the market development process. When constraints

bind, they reflect real-world circumstances in which firm managers become aware of profitable market

opportunities only if the level of demand is sufficiently high. When asymmetric, the constraints also

play a role in the determination of the first investor, in the same way as a marginal cost asymmetry or

a quality differential, as suggested by Smit and Trigeorgis (2004), or a difference in investment costs,

as in Kort and Pawlina (2006).

1.2. The empirical evidence

To what extent does the first-mover advantage in the product market stage impact the entry

sequence of firms? Does it preserve the rent equalization and dissipation properties, or can it generate

more value to the leader? What is the consequence of an increase in growth or volatility with a

first-mover advantage? These questions find only incomplete answers in the empirical literature that

explicitly refers to a real options framework. In a research note, Folta and Miller (2002) conjecture that

first-mover advantages accelerate entry. This is the outcome of analytical reasoning with no formal

specification of firms’ interactions in their investment choices. In a complementary paper, Folta and

O’Brien (2004) use data from a broad array of industries to find support for their hypothesis that the

choice by firms to enter a new activity is positively related to a measure of early-mover advantages.

Using the same data, Folta, Johnson, and O’Brien (2006) examine the effects of irreversibility and

uncertainty on the likelihood of entry into new activities. They find that greater uncertainty, measured

at the industry level, decreases the likelihood of entry. Although they are consistent with the standard

real options approach to investment, these findings cannot fully capture the strategic dimension (in

the game theoretic sense) that characterizes the entry choice by several firms in the same market.

More specifically, whether two firms enter almost simultaneously (the same year), or one after another

over a longer period of time (in two different years), is not considered in the econometric model.
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Therefore, it is not clear whether a first-mover advantage in the product market, as gained by an early

entrant, impacts the timing of decision and the firms’ values in a given industry. In another empirical

study, Driver, Temple, and Urga (2008) investigate the connection between uncertainty and a firm’s

decision to invest more or less in the future. They find that a measure of irreversibility is a predictor

of a negative effect of uncertainty on investment levels, while indicators of first-mover advantages

contribute to a positive effect. However, the survey data they use are collected in a quarterly survey

over two decades. Demand conditions are likely to change significantly over such a long time period.

It is therefore not easy to disentangle the consequences of such changes from the role of industrywide

characteristics on the timing of firms’ investment choices. Moreover, none of these papers refers to

firms differences in their ability to identify new market opportunities. They do not connect to another

stream of empirical investigations which have evidenced that, depending on previous experience, or

other organizational endowments, firms are not equally alert (Zaheer and Zaheer, 1997; Helfat and

Lieberman, 2002; Nerkar and Roberts, 2004).

1.3. The main results

It is well known since Posner (1975) that rival firms take in value by competing for a lead position

resulting in supernormal profit. The equilibrium analysis in this paper demonstrates that whether a

persistent first-mover advantage à la Stackelberg reinforces this result or not in fact hinges on firms’

relative alertness.

When firms are able to detect an emerging demand very early, and the first entrant benefits from

a higher flow profit than the follower, investments are sequential in equilibrium. Each firm may enter

first with the same probability, rent-equalization occurs, and there is more dissipation than without

a first-mover advantage (as, for example, in Boyer, Lasserre, Moreaux, 2011). A different picture

emerges when the perfect alertness assumption is relaxed. If a firm-specific trigger constraint binds,

a possible outcome is simultaneous entry, which occurs with nonzero probability if and only if the

binding constraints are symmetric and relatively mild. This contrasts with the usual conclusion in the

literature that a simultaneous investment equilibrium does not occur in the new market case. Other-

wise, when investments are sequential (preemption), a firm maximizes value by entering immediately

before its rival, though later than with perfect alertness. In this equilibrium type, there is no rent

equalization. The leader with a first-mover advantage is strictly better-off than in the unconstrained

case, whereas the follower is at best indifferent. By dampening competition for the lead position,

limited alertness transforms the market advantage into more value to the leader (a case of comple-

mentarity) in the investment stage, and less to the follower. There is cumulative leadership as with

sequential investments the first entrant is the more alert firm, and also the one that earns higher flow

profits. Another interesting result is that investment constraints can be so weak as to be slack in the

benchmark scenario (Cournot players and perfect alertness), and still bind and imply more value to
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the leader when a first-mover advantage is introduced. Finally, limited alertness is less likely to impact

the entry sequence, and to yield a large leader-follower differential value, in a highly uncertain market.

In a constrained preemption equilibrium, more volatility in the market development process always

benefits the less alert firm, and expands the endogenous distance between the two firms’ investment

triggers.

2 An Example: Investments in the Digital Music Industry

Many business situations illustrate a scenario of cumulative leadership in which the firm that detects in

advance a new market opportunity preempts the lead position in the entry process, thereby benefitting

from a first-mover advantage, which can be persistent.

The market for legal music downloads offers a clear illustrative example. A decade ago demand

was nonexistent; now, it keeps growing at an unprecedented rate. Large firms compete by distributing

goods (songs) available from very similar sources (catalogs of titles), and variable costs are negligible

relative to capital investments (in technological diffusion capacities, advertising campaigns, or digital

rights), which are — at least partly — sunk. In 2001, Apple first invested in this industry when the

market was burgeoning with its iTunes Music Store (iTMS). It was an early move in that sales remained

very limited for almost three years before accelerating sharply. According to the Recording Industry

Association of America, in 2001, digital downloads represented only 0.2 percent of total sales. It rose

to 0.5 percent in 2002, 1.3 percent in 2003, then fell to 0.9 percent, before jumping to 5.7% in 2005. It

has been strongly increasing since then. The sales of digital music constituted 25% of the total market

by value in 2007, 34% in 2008, 41% in 2009, 46% in 2010, and 50% in 2011.4

Firms in the digital music industry are not equally alert. In a press conference on the first

anniversary of iTMS, Apple CEO Steve Jobs emphasized the fact that Apple was more alert than

rivals to assess the sales potential of that market when it was only embryonic:5 “Zero to 70 million

in one year, you know, if a year ago anyone had predicted that iTunes would sell 70 million songs

during its first year, they would have been laughed out of town.” Steve Jobs was frequently portrayed

as one who “has the phenomenal quality of figuring out where the next industry movement would be”

(http://www.iipm.edu, Sept. 23, 2007).

This does not apply to the management of Microsoft, a more recent participant in the market

for music downloads. It seems to be well accepted among business analysts that “[t]hroughout its

history, Microsoft has been slow to grasp some of the computer industry’s biggest technology shifts

4Source: the Recording Industry Association of America (http://www.riaa.com/keystatistics.php).
5See the transcript of the press conference from Steve Jobs concerning the first anniversary of the iTunes Music Store,

dated April 29, 2004, available at: http://www.macobserver.com.
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and business changes (. . . ). It also was late coming to market with its own music player, and despite

a push, remains far behind Apple” (http://online.wsj.com, July 30, 2007). In fact, Microsoft waited

until late 2006 to launch its own player Zune and then MSN Music Store, when demand had reached

a much higher level. At that time, the consensus among observers was that Apple’s sales would

not be strongly impacted by the new entrant. The president of Microsoft’s entertainment division

acknowledged that “analysts don’t expect the early effort to make a serious dent in Apple’s market

share. (. . . ). Apple’s obviously still going to be the leader. I think that’s fair. (. . . ) While Microsoft

is a great brand name it’s, you know, not the first word that comes to your mind when someone says,

Hey, music!” (http://www.businessweek.com, Nov. 13, 2006). Another expert was even more explicit,

as it claimed that Apple “has something that the Zune certainly lacks: first-mover advantage. This

advantage is primarily kept where people have bought their music via the iTunes store. The amount

of effort to get your music in a format that is playable on the Zune (or any other player) is just too

much” (http://www.zdnet.com, Sept. 20, 2006).

The first-mover advantage is likely to be a long-lasting phenomenon when it is supported by a

combination of brand loyalty, use habits, and switching costs of all kinds, including network effects

in connection to a technical device with a proprietary format. In that case, “first-movers benefit

from building up an installed base early” (Koski and Kretschmer, 2004, p. 19). More specifically,

intellectual property experts emphasize that “iPod owners derive benefits from the ease with which

the iPod interconnects to a personal computer and iTMS,” and certainly incur “high switching costs,

one of which is learning alternative downloading methods” (Arewa and Sharpe, 2007, pp. 339 and

344). This occurs at the expense of new entrants. Microsoft’s market share has never been more than

a small portion of Apple’s position over a long time period. A new consumer in the digital music

market pays for the hardware (a portable media player) before getting access to an online music store.

In addition, a customer gets used to routines (to search the catalog content, download files, pay) that

render a shift to an alternative supplier costly. When satisfied with the first supplier, one is likely

to keep purchasing from it. This represents many of the circumstances captured by the model in the

next section.

3 The Model

� General specifications. Two risk-neutral symmetric profit-maximizing firms, f and −f , contemplate

entry in a new market to sell a non-differentiated good in quantities xft and x−ft , respectively, at each

point in time t. Production requires an investment in an asset, which allows a firm to supply up to a

given finite output — a capacity — normalized to 1. The fixed cost of installing capacity is I in current

value. Once installed, the asset has no resale value as it is firm-specific, and it does not depreciate.
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The variable costs of production are negligible. At time t ≥ 0, inverse demand is described by the

function

P (Xt, Yt) = YtD
−1(Xt), (1)

where P is the final market price, Xt = xft + x−ft ≥ 0 is the total output, and Yt ≥ 0 is a random

industrywide shock. The time-invariant functionD(.) is strictly decreasing, continuously differentiable,

and integrable on R1+, with D(0) = limP↓0D(P ) < ∞; the mapping Xt �→ XtD
−1(Xt) is strictly

concave on (0, D(0)). Aggregate shocks (Yt)t≥0 follow a geometric Brownian motion

dYt = αYtdt+ σYtdZt, (2)

with Y0 > 0, α > 0 (growth), σ > 0 (volatility), and where (Zt)t≥0 is a standard Wiener process.6

Demand is thus characterized by a deterministic positive trend and stochastic fluctuations that make

future levels uncertain.

The timing of the game is as follows: 1) at any t, given the realization of Yt, each firm chooses to

invest or not in the productive asset; 2) given installed capacities, each firm selects an output level xt

which can be constrained; 3) given output levels, the market price is determined according to (1).

The solution concept is the Markov perfect equilibrium (MPE).7 In a MPE a firm’s investment and

output decisions depend only on whether firms have already invested or not and on the current level

of Yt. It follows that, given installed capacities, firms cannot attempt to coordinate output decisions

over time. At each date, they play the unique equilibrium of the market subgame. A MPE outcome is

an ordered sequence of the firms’ respective investment triggers with related quantities (xft , x
−f
t ). An

investment trigger is denoted by yij , where (i, j) ∈ {0, 1}2 refers to the firms’ asset base immediately

before Yt reaches the threshold yij for the first time from below. Initially i = j = 0, then i = 1 if the

firm has invested, and j = 1 when its competitor has invested.

� Market scenarios. There are two versions of the model. The Cournot version of the model, in which

the two firms choose quantities simultaneously, is the same as in Boyer, Lasserre, and Moreaux (2011)

and is used as a benchmark. In the Stackelberg version, the first entrant is also a first mover in the

market subgame, and thus benefits from a persistent advantage, as in Mason and Weeds (2009). In

both scenarios, market outcomes depend on each firm’s installed capacity:

(i) Cournot firms sell the same quantity xC . Let kC = ⌈xC⌉ be the minimum capital stock (an

integer) required to produce xC . The market subgame is assumed to admit a unique equilibrium

6The geometric brownian motion is derived from Yt = Y0 exp
��
α− 1

2σ
2
�
t+ σZt

�
by using Itô’s lemma. For the

equation of motion to describe a market in expansion, it is assumed that α > σ2

2 .
7See Appendix A1 for a formal definition.
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(xC , xC), with 0 < xC ≤ 1, so that kC = 1. When both firms operate one capacity unit each, they

cannot be constrained.

(ii) The Stackelberg leader benefits from a first-mover advantage over its rival. Let kL = ⌈xL⌉ and

kF = ⌈xF ⌉ be the minimum capital stocks required to produce xL and xF , as sold by the leader and

the follower, respectively. For comparison with the previous benchmark scenario, it is assumed that

the market subgame admits a unique equilibrium (xL, xF ) with 0 < xF ≤ xL ≤ 1, which is constant

over time (persistency), so that kL = kF = 1. No firm is constrained when both have invested.

The specification that kC = kL = kF = 1 formalizes the assumption that the capacity of the

productive asset is “lumpy”. This guarantees that investments stop as soon as each firm has invested

in one capacity unit. However, in the two scenarios the monopoly output xM can be greater than 1.

In that case, and provided that only one firm has invested, production is capacity constrained until

the other firm invests as well.8

� Profit rankings. Given the installed asset base, from (1) the equilibrium of the market subgame

does not depend on the multiplicative shock Yt. A firm’s instantaneous gross profit is Ytπij , where

πij depends on the asset base (i, j) and on the firm’s rank in the investment sequence. Instantaneous

profits are π00 = π01 = 0 for a non investor, and π10 in the monopoly case. When both firms have

invested, π11 can take the values πC (Cournot duopoly profits), πF (follower’s profits), or πL (leader’s

profits), depending on the existence of a first-mover advantage. For simplicity we use the parameters

φ ≡ πF
π10

, γ ≡ πC
π10

, and λ ≡ πL
π10

, with

0 < φ ≤ γ ≤ λ ≤ 1, (3)

which is sufficiently general to capture a large class of circumstances.9 In this quantity-setting duopoly

model, the ranking holds whenever best-reply functions have a negative slope in the
�
xft , x

−f
t

�
-plane.10

The assumption that φ < (=)λ reflects the long lasting impact of brand loyalty, switching costs, or

network effects (with an equality sign in the Cournot scenario).11

8This does not imply that the first investor would find it profitable to increase its capacity by investing in several

productive assets. This is made formal in the next section as a comment of the value function L (.) in (5).
9The possibility that the leader earns higher instantaneous profits than in monopoly, that is, π10 < πL, is not

considered. This case is precisely investigated by Mason and Weeds (2009, Proposition 5), where unusual comparative

statics results characterize situations in which the follower’s investment benefits the leader so much as to outweigh

the effect of increased competition. However, we may have πF = πC = πL, so that the Stackelberg market substage

equilibrium coincides with the Cournot equilibrium (this occurs here if xC = 1 < xM ).
10The ranking in (3) is rooted in the quantity-setting firms assumption. Indeed the same ranking cannot occur in

a price-setting duopoly with standard specifications, where the slope of best-reply functions is positive, resulting in a

second-mover advantage, as first demonstrated by Gal-Or (1985).
11In real-world circumstances, a first-mover advantage is likely to erode over time (see Cottrell and Sick (2005) for

historical evidence). Therefore, the firms’ equilibrium values, as derived in the present setting, should be seen as reference

levels vis-à-vis more realistic situations in which the first investor’s superiority is only temporary.
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The specification that firms invest in a finite capacity — as opposed to an abstract project — offers a

very natural set-up to generate all possible profit rankings that satisfy (3). For example, suppose that

investing in one capacity unit is more than sufficient to supply the unconstrained Cournot output.

Then, a linear demand D(.) leads to a usual ranking: xC < 1⇒ φ < γ < λ < 1.12 To compare, suppose

that investing in one capacity unit is exactly sufficient to supply the unconstrained Cournot output

but not the monopoly quantity. This gives a less usual ranking: xC = 1 < xM ⇒ φ = γ = λ < 1.13

As for the equality γ = 1, or λ = 1 with a first-mover advantage, it is a limit case that can only be

approached here (demand is strictly decreasing).

� Trigger constraints. Before any investment occurs, the firm-specific trigger constraints y00 ≥ yf and

y00 ≥ y−f , with 0 ≤ yf ≤ y−f , formalize the assumption that at least one potential entrant is not able

to seize profit opportunities until Yt has reached a certain level. In case f detects the new demand

before −f and invests at Yt < y−f , by doing so it reveals the investment opportunity to its rival, which

can thus choose to exert its option immediately after the first entrant. Firms are “perfectly alert”

only if yf = y−f = 0. The thresholds yf and y−f cannot be adjusted in the short run. They capture

organizational endowments and do not depend on the nature of competition in the market subgame.

4 Perfect Alertness

In this section, as standard in the literature, it is assumed that firms may invest with no delay at any

point in time from t = 0 onward (yf = y−f = 0, so the trigger constraints are obviously slack). The

MPE is characterized against the Cournot benchmark.

To do that, suppose first that a firm enters when Yt = y, and that its competitor enters later,

when Yt reaches a higher level y01. For all y < y01, the value function of the latter firm is

Fy01(y) =

�
y

y01

�β � πF
r − α

y01 − I

�
, (4)

where β = 1
2 −

α
σ2

+
	�

α
σ2
− 1

2

�2
+ 2r

σ2


 1
2
, with the constant discount factor r > α implying that

12Still, the magnitude of profit differences depends on the status of other capacity constraints. More specifically, in

this ranking π10 is relatively high if xM ≤ 1 (the slack case), and lower otherwise, though strictly above πL, which is

constant across the two cases.
13Absent capacity constraints, and without introducing an additional process of imitation, innovation, or externalities,

Colombo and Labrecciosa (2008) establish that a very specific condition on the inverse demand function is needed for

the Stackelberg market substage equilibrium to coincide with the Cournot equilibrium.
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β > 1.14,15 The maximum F ∗(y) with respect to y01 is obtained at y∗01 =
r−α
πF

I β
β−1 , which is monotone

decreasing in φ.16 Note that F ∗ (y∗01) = I
β−1 , a constant which does not depend on instantaneous

profits. For all y ≤ y∗01, the value function of the firm that invests immediately when Yt = y, while its

competitor remains out of the market as long as Yt has not hit y∗01, is

L(y) =
π10

r − α
y − I +

�
y

y∗01

�β πL − π10
r − α

y∗01. (5)

If the two firms compete à la Cournot in the market subgame, define y∗C ≡ y∗01|φ=λ, which is used

in F ∗C ≡ F ∗|φ=λ and LC ≡ L|φ=λ. Note that φ = γ implies y∗C = y∗01 for all λ ≥ φ.

For all y ≥ Y0, if both firms invest simultaneously when Yt = y, their common value is17

S(y) =
πC

r − α
y − I. (6)

When a firm can commit, at t = 0, to lead the investment sequence, and chooses to postpone entry

until Yt reaches a higher level y00, its value is Ly00(y) =
�
y
y00

�β �
π10
r−αy00 − I

�
+
�
y
y∗01

�β
πL−π10
r−α y∗01, for

all y < y00. The maximum of Ly00(y) with respect to y00, hereafter denoted by L∗(y), is obtained at

yL00 =
r−α
π10

I β
β−1 , which is strictly lower than (or equal to) y∗01 because πF < (=)π10.

18

While the value L∗(yL00) depends on πF and πL, the threshold yL00 does not change with the level of

profits earned in the market subgame. It remains the same with or without a first-mover advantage.

This leads directly to a first claim:

Proposition 1 If at t = 0 a firm may commit to lead the entry process, it chooses to enter when

Yt = yL00 independently of the nature of competition on the product market in the post-entry period,

although φ < (=) γ < (=)λ implies L(yL00) > (=)LC(y
L
00) and F ∗(yL00) < (=)F ∗C(y

L
00).

In the value analysis that follows, the threshold yL00, with which all other useful thresholds are

compared, is used as a natural upper bound to the interval of Yt that describes the early stage of the

market development process.

14If r ≤ α the firm’s value is maximized by postponing investments forever. In (4) the term
�

y

y01

�β
reads as the

expected discounted value, measured when Yt = y, of receiving one monetary unit at the first-hitting time τ01 = inf{t ≥

0 : Yt ≥ y01}. If σ is formally set equal to zero (no uncertainty), we have Yt = Y0 exp (αt) and β = r
α

so that
�

y

y01

�β
= e−r(τ01−t), the usual discounting term.

15For a detailed exposition of the steps that lead to the expression of β, see Dixit and Pindyck (1994, pp. 140-144).
16Fy01(y) is concave in y01 if and only if y01 <

�
1 + 1

β

�
y∗01. This second-order condition is thus satisfied at y01 = y∗01

for all β > 1.
17The expressions of the value functions in (4), (5), and (6), are standard in the real options literature. For an early

introduction, see Dixit and Pindyck (1994, pp. 309-314). For a more technical presentation, see Huisman (2010, Ch. 7).
18In the next section, the property that Ly00(y) is concave in y00 if and only if y00 <

�
1 + 1

β

�
yL00 will be useful to

identify the maximizer when an investment trigger constraint binds.
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A possible extension is to allow firms to invest in several assets. However, given the “lumpiness”

assumption (kC = kF = kL = 1) the second entrant never chooses to do so. As for the first entrant,

a necessary (and not sufficient) condition for multiple investments is a constrained monopoly output

(1 < xM). In that case, once the firm has committed as a leader by investing first, it chooses

the timing of any subsequent investment independently of the other firm. Then (5) generalizes to

L (y, k) = π10
r−αy−I+

�k−1
i=1

�
y
yL
i0

�β �π(i+1)0−πi0
r−α yLi0 − I

�
+
�
y
y∗0k

�β
πk1−πk0
r−α y∗0k, where k ≥ 1 is the leader’s

number of investments, yLi0 are maximizers (with i = 1, . . . , k − 1), and y∗0k is the follower’s choice.

Then, L (y, k + 1) − L (y, k) > 0 if and only if
π(k+1)0−πk0

π11
> β

1
β−1 , so that the marginal profit must

be sufficiently high above π11 for an additional investment to be profitable. This is ruled out in this

paper as i, j ∈ {0, 1} WLG in the set of profit levels satisfying (3).

Suppose now that firms cannot commit vis-à-vis the investment sequence. Recalling that the

functions F ∗ and L are both defined on y < y∗01, we solve F ∗ (y)− L (y) = 0, to obtain:

Lemma 1 There exists a unique positive yp00 < y∗01 such that L (y) > (=)F ∗ (y) if and only if y >

(=) yp00.

Proof See Appendix A2. �

To compare MPE outcomes with and without a first-mover advantage, observe that, given π10,

one finds d2F∗(y)
dφdy = d2L(y)

dλdy = β2

β−1

�
y
y∗01

�β
I
φy > 0, and d2L(y)

dφdy = −β2 (1− λ)
�
y
y∗01

�β
I
φ2y

< (=) 0 for

all λ < (=) 1. The slope of F ∗ (y) is monotone increasing in φ, and the slope of L (y) is monotone

increasing in λ, and decreasing in φ. Therefore:

Remark 1 yp00 and F ∗ (yp00) = L (yp00) are monotone decreasing in λ/φ.

More specifically, for ypC ≡ yp00|φ=λ, we have yp00 < (=) ypC and F ∗ (yp00) = L (yp00) < (=)F ∗C
�
ypC
�
=

LC
�
ypC
�
, all φ < (=)γ < (=)λ. This means that the two firms’ respective values equalize at a

lower level when there is a first-mover advantage in the market subgame. In the time dimension,

τp00 = inf{t ≥ 0 : Yt ≥ yp00} < (=) τpC .

We can now examine whether firms choose to be either the first or the second entrant, or to enter

simultaneously. Let Y0 ≤ yp00 hereafter, for simplicity. There are three possible cases. Suppose first

that y < yp00, which implies that L (y) < F ∗ (y), hence no firm has an incentive to enter first. Suppose

now that y ≥ y∗01 and that no firm has entered yet. In that case, extend beyond y∗01 the interval of

y on which L and F ∗ are defined. As argmaxy01 Fy01(y) ≡ {y∗01}, the follower finds it profitable to

invest immediately at current level y, that is at the same time as the leader (the dashed line in Figure

1), implying that F ∗ (y) = L (y) = S(y). Eventually, in the intermediate interval yp00 ≤ y < y∗01, it is

valuable to take the lead because F ∗ (y) < L (y). Therefore, each firm has an incentive to “undercut”

its rival on the segment [yp00, y
L
00] to preempt the lead position.

12
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Figure 1: Firm values with P (X,Yt) = Yt (1−X), r = 1/2, α = 1/4, σ = 1/4, and I = 1/10. If a firm can commit to

lead, it enters at yL00. Without commitment, each firm may lead with probability 1/2. In the Cournot scenario (point

C) the leader enters at ypC , and the follower at y∗C , the firms’ values are L (ypC) = F ∗ (ypC). In the Stackelberg scenario

(point S), the leader enters at yp00, the follower at y∗01, and the firms’ values are L (yp00) = F ∗ (yp00).

The dynamics of competition for the lead position in the investment stage is qualitatively the same

across the Cournot and Stackelberg scenarios. All properties of the preemption equilibrium, including

rent dissipation and equalization, are robust to the introduction of a first-mover advantage. The only

differences are that 1) the leader enters earlier, 2) the follower enters later, and 3) each firm’s value is

lower in equilibrium as a result of rent equalization. More formally:

Proposition 2 Suppose φ < (=)γ < (=)λ: (1) There exists a unique preemption equilibrium in which

firm f invests with probability 1/2 at yp00 < (=)ypC at the first-hitting time τp00 < (=)τpC, while firm

−f enters with probability 1/2 at y∗01 > (=) y∗C; that is, it waits until τ∗C > (=)τ∗01; (2) The two firms’

equilibrium value is F ∗ (yp00) = L (yp00) < (=)F ∗C
�
ypC
�
= LC

�
ypC
�
.19

Proof Equilibrium investment strategies for all levels of Yt are derived in Appendix A1, and proba-

bilities of leading/following are calculated in Appendix A4.20 �
19Here τ∗01 = inf{t ≥ 0 : Yt ≥ y

∗

01}.
20Following Grenadier (1996), an alternative to the calculation of probabilities in Appendix A4 is to assume that,

when firms choose the same point in time to enter, an exogenous random mechanism assigns the lead position to one of

them by the flip of a fair coin.
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In more intuitive terms, the preemption MPE is an outcome of exacerbated competition when each

firm is interested not only in leading the investment process, but also in benefitting from a first-mover

advantage in the market subgame. The possibility given by entering first, and being able to earn πL

(in lieu of πC), is at first glance a bonus for the leader and a penalty for the follower. It makes the prize

sweeter, and defeat bitter. However, in equilibrium, the first-mover advantage results in the leader

entering earlier (φ < λ implies yp00 < ypC < yL00), and the follower entering later (yL00 < ypC ≤ y∗01).

No rent results from the extended incumbency period because the rent equalization property holds.

Actually, there is more dissipation in comparison to the reference value L∗(yL00), as obtained when a

firm can commit as a leader. The firms’ equal investment option exercise values L (yp00) = F ∗ (yp00) are

lower than LC
�
ypC
�
= F ∗C

�
ypC
�
, although the difference between L and F ∗ is higher than between LC

and F ∗C for all values of y. The first-mover bonus at the market level turns into more competition at

the investment level, and in fine in a lower value for both entities.21

In Proposition 2, as the probabilities of leading or following are both equal to 1/2, the probability

of a simultaneous investment at yp00 (a “mistake” as coined by Fudenberg and Tirole (1985)) is nil.

Firms may not escape that situation by cooperating to enter at the same time and later than when

Yt = yp00, at some stochastic date τ > τp00. This would not be a self-enforcing deal (here, it is assumed

such an agreement is not contractible, say for legal reasons). Supposing it takes place, the agreement

would result in the same value Sy00(y) =
�
y
y00

�β �
πC
r−αy00 − I

�
, as the firms do not invest at the

current level Yt = y, and choose to enter simultaneously when Yt hits y00. If Yt = y < y00 both

firms are inactive, and if Yt = y ≥ y00 their instantaneous flow profit is as in the Cournot scenario.

Hence, Sy00(y) is identically equal to F (y) with φ = γ, and a maximum value S∗(y) is obtained for

y00 = y∗C < (=)y∗01 (for all φ < (=) γ). When Yt hits this threshold y∗C , each firm’s value is S∗(y∗C). If

a firm f chooses to deviate while −f sticks to the agreement, it may enter immediately before Yt hits

y∗C , that is, at y∗C − ε, with ε positive and arbitrarily small, for a value L(y∗C − ε). While in the case of

simultaneous entry, each cooperating firm earns only πC from τ∗C ≤ τ∗01 on forever, in case of deviation

f earns π10 from τ∗C − ε to τ∗01, and then πL from τ∗01 on, again forever (it incurs the entry cost I at —

almost — the same time in the two cases). Because πL ≥ πC , the simultaneous entry agreement cannot

be enforced for all π10 ≥ πL ≥ πC > 0.

Figure 1 illustrates Proposition 2. The distance between L and F ∗, at y approaching y∗01, can be

measured by observing that limy↑y∗01
L(y)−F ∗(y∗01) = I β

β−1

�
λ
φ − 1

�
, which is proportional to λ

φ . One

also obtains a longer time period during which the first entrant is the unique supplier. Although it

does not lead to blockaded entry, playing first in the short-run market subgame postpones the other

21The extension of the assumption πF < πC < πL, and consequently of Proposition 2, to more than two firms is not

straightforward. In a static hierarchical Stackelberg model where n firms choose outputs sequentially, Anderson and

Engers (1992) provide a necessary and sufficient condition (on a demand parameter and on the number of firms) for the

first mover to earn lower profits in Stackelberg than in Cournot if n > 2.
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firm’s investment for a while. This comes at some cost, since the leader enters earlier, at more risk,

relative to the commitment case (investment trigger yL00). Finally, note that the difference between

yL00 and y∗01 depends on φ, but not on λ, while (4) and (5) are such that yp00 = ypC and y∗01 = y∗C if and

only if φ and λ are equal. More precisely:

Remark 2 yp00 < (=) ypC < (=) yL00 < (=) y∗C < (=) y∗01 if and only if φ < (=)γ < (=)λ < (=) 1.

When the profit π10 of a constrained monopolist (case 1 < xM) exactly matches the unconstrained

Cournot profit πC , the function LC(y) is linear and tangent to F ∗C(y) at ypC = yL00 = y∗C . In the latter

limit case only, the Cournot scenario collapses to the commitment situation in that the value of the

two firms is exactly equal to the level of a firm protected from preemption.

There are situations in which we do not obtain either only equality signs or only strict inequality

signs throughout the rankings in Remark 2. In particular, in the Cournot case φ = γ = λ < 1 implies

yp00 = ypC < yL00 < y∗C = y∗01.

5 Limited Alertness

From Proposition 2, we know that each firm may lead the investment schedule, or follow, with proba-

bility 1/2, independently of the first-mover advantage, if any. The indeterminacy of the identity of the

leader/follower is a consequence of the assumption that firms are ex-ante symmetric. To avoid relying

on a random selection of roles with no economic rationale, one may introduce a quality differential

or a marginal cost asymmetry, as suggested by Smit and Trigeorgis (2004), or an investment cost

asymmetry, as in Pawlina and Kort (2006). Then the firm with a lower fixed or marginal cost or with

a higher demand is the one that preempts its less profitable competitor.

A complementary approach, adopted here, is to relax the assumption that firms are equally able

to detect a new market or to make an investment decision at any point in time, with no delay, from

t = 0 onward. Formally, a simple departure from this frictionless world is to introduce the investment

trigger constraints Yt ≥ yf and Yt ≥ y−f , with 0 ≤ yf ≤ y−f . Because the analysis focuses on

an infant industry, and the level yL00 is not only lower than y∗01, but also a reference point common

to the Cournot and Stackelberg scenarios (see Proposition 1), in what follows it is specified that

yf ≤ y−f ≤ yL00 (i.e., both firms are sufficiently “alert” to invest as soon as Yt hits yL00).
22 In other

words, beyond that threshold it is assumed that the market is so mature as to be discernible by both

firms, so that investments can occur with no delay.

Note that the trigger constraints differ from the decision lags in Gilbert and Harris (1984, Section

3) where a firm is assumed to be able to invest strictly before its rival. In the latter reference paper,

22In stochastic time terms, τf ≤ τ−f ≤ τ
L
00.
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the first investment can occur at any t ≥ 0. The decisions lags, although arbitrarily close to zero, are

always positive. To compare, in the present model, (i) we may have yf = y−f (≥ 0), in which case the

firms are fully symmetric; (ii) a firm has limited alertness only if Yt < yL00, that is in the infant industry

period; and (iii) no firm is a priori assumed to invest before its rival. This also differs from a real

option model of competitive industry by Grenadier (2000), where a profit flow is received by any firm

investing at t only from t+d onward, with d defined as a positive constant. This time-to-build captures

the lag between the initiation of an investment and completion. In Pacheco-de-Almeida and Zemsky

(2003) there is also a parametrized lag, which formalizes a delay between firms’ investment decisions

and production. In both cases, the lag is not attached to the firms. It specifies the technological

conditions of implementing a given decision to invest. In contrast, the trigger constraints here capture

a pre-investment rigidity rooted in firm-specific organizational resources.23

The exact timing of entry and the firms’ equilibrium values depend on the comparison of yf and

y−f with yp00. When both firms are almost perfectly alert, in the sense that Y0 < y−f ≤ yp00, we

directly infer from Proposition 2 that a free MPE outcome is obtained in which only one firm enters

at yp00, while the other firm waits until Yt reaches y∗01.
24 Any firm can be either the leader or the

follower with equiprobability 1/2, and a well-known result is that the probability of a “mistake” —

that is, a simultaneous investment — at yp00 is exactly zero (see (25) in Appendix A4). In that case,

the specification that yf and y−f may differ across firms plays no role.

Of more interest are all situations in which a constraint binds. Symmetric and asymmetric cases

are considered in turn.

5.1 Symmetric Constraints

Whenever yp00 < yf = y−f = yS, the symmetric “floor” yS prevents rent competition to fully dissipate

and to equalize the monopoly rents. In the constrained preemption equilibrium, two distinct situations

may occur that depend on the comparison of the common level yS with a threshold ỹ, which is implicitly

defined as the unique solution to S (y)− F ∗ (y) = 0. We have:

Lemma 2 There exists a unique ỹ such that S (y) > (=)F ∗ (y) if and only if y > (=) ỹ. The threshold

ỹ is monotone increasing in φ, with yp00 < limφ↓0 ỹ = r−α
πC

I < limφ↑1 ỹ = y∗01.

Proof See Appendix A3. �

The threshold ỹ is thus bounded from below by r−α
πC

I, which is lower than yL00 whenever
1
γ < β

β−1 .

23See Azevedo and Paxson (2011) for a detailed discussion on alternative specifications of ex-ante asymmetry between

firms in real-option game models.
24Here yp00 ≤ ypC implies that, in the Cournot scenario, if y−f ≤ yp00, the leader enters at ypC (not at yp00) in a free

premption equilibrium.
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If yp00 < yS < ỹ (relatively weak trigger constraint), one of the two firms, say f , enters immediately at

yS , and −f again enters at y∗01. As formalized in the next proposition, the probability for each firm to

lead or to follow is the same, though strictly less than 1/2 (a consequence of yp00 < yS). In that case,

the probability of simultaneous entry at yS is not zero anymore. If yp00 < ỹ ≤ yS (sufficiently strong

trigger constraint), the probability of simultaneous entry at yS is equal to 1, and preemption never

occurs. To summarize:

Proposition 3 (symmetric constraints) Suppose that yf = y−f = yS, with yp00 < (=) yS ≤ yL00:

firm f invests as a leader with probability pfL(yS) when Yt reaches yS for the first time, firm −f enters

as a follower with probability p−fF (yS) at y∗01, or both firms invest simultaneously with probability pS(yS).

In the constrained equilibrium, investments are:

(1) either sequential (preemption) or simultaneous if yp00 < (=) yS < ỹ, with

0 < pfL(yS) = pfF (yS) =
F ∗(yS)− S(yS)

L(yS) + F ∗(yS)− 2S(yS)
< (=)

1

2
; (7a)

0 < (=) pS(yS) =
L(yS)− F ∗(yS)

L(yS) + F ∗(yS)− 2S(yS)
< 1; (7b)

(2) simultaneous if ỹ ≤ yS ≤ yL00, with

pfL(yS) = p−fF (yS) = 0 < pS(yS) = 1. (8)

Proof See Appendix A4. �

As a particular case, in the Cournot scenario the absence of first-mover advantage implies that

S(y) < (=)F ∗C(y) for all y < (=) y∗C . More formally:

Corollary 1 ỹ = y∗C if φ = λ, implying that yS ≤ yL00 < ỹ. Then, 0 < pfL(yS) = pfF (yS) ≤
1
2 and

0 ≤ pS(yS) < 1.

This means that, when trigger constraints are symmetric and there is no first-mover advantage,

Proposition 3 simplifies to the situations described by (7), in which the probability that firms invest

sequentially is non zero, and the probability of simultaneous entry is strictly less than 1. Moreover,

while the probability of simultaneous entry at yp00 is zero (no “mistake”) for all parameter values, the

likelihood that firms invest at the same time at yS > yp00 can be positive, in contrast to the literature.25

It depends on the flow profit reduction which penalizes the second investor:

Corollary 2 Suppose that r−α
πC

I < yS . Then pS(yS) = 1 if φ is sufficiently low.

25See Chevalier-Roignant and Trigeorgis (2011, Chapter 12) for a detailed analysis of the probability of simultaneous

entry, in the absence of first-mover advantage, and without trigger constraints.
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In other words, when the symmetric constraint parameter yS is above the lower bound for ỹ, which

is monotone strictly increasing in φ (Lemma 2), the situation where both firms enter simultaneously

with probability 1 is more likely when φ is low, all other things equal. In that case, the two firms’

symmetric payoff is S(yS), with F ∗ (yS) < (=)S (yS) < (=)L (yS) for all yS > (=) ỹ and γ < (=) 1.

5.2 Asymmetric Constraints

If yf < y−f , firm f is given the possibility not to invest immediately when Yt hits yf . It faces no threat

of entry by the rival −f whenever Yt < y−f , and thus may choose not to invest until Yt reaches a higher

level y00 in [yf , y−f ].
26 When positive, the difference in trigger constraints makes it impossible for firm

−f to contest the lead position for a while. Firm f may thus exploit the lack of market awareness of

its rival to postpone entry and nevertheless to enter first, at less risk, and at some benefit. As opting

for leadership in the entry process is a dominant strategy, and y−f ≤ argmaxy00 Ly00 (y) ≡
�
yL00


(see Proposition 1 and subsequent comment), firm f ’s optimal choice is to enter at y−f − ε with ε

arbitrarily small (henceforth ε is set equal to zero for simplify).27 We obtain:

Proposition 4 (asymmetric constraints) Suppose that yp00 < yf < y−f ≤ yL00: the constrained

equilibrium is sequential (preemption), firm f invests immediately with probability 1 when Yt reaches

y−f for the first time, and firm −f enters later with probability 1 at y∗01.

Proof Firm f , which is less constrained than −f , can choose to invest at any point in [yf , y−f )

independently of firm −f . As S (y) < (=)L∗ (y) for all y ≤ y∗01, firm f has no incentive not to exploit

the leadership possibility. As Ly00(y) (introduced in section 4) is concave for all y00 ≤ yL00, with a

maximum at yL00, and y−f ≤ yL00 (by assumption), firm f maximizes value by investing as late as

possible, that is when Yt reaches y−f ≤ yL00. �

This result establishes that asymmetric and quite stringent trigger constraints are sufficient for

preemption to occur (the probability of a simultaneous investment is zero), and the identity of the first

entrant is no longer indeterminate. Leadership is more cumulative than in the perfect alertness situa-

tion and in the symmetric trigger constraint case (here the more alert firm invests first with probability

1 and subsequently benefits from this timing in the market stage). In the constrained equilibrium of

Proposition 4, an important property is that a first-mover advantage and limited alertness have a

complementary effect on the two firms’ value at the investment option exercise date. Formally:

26In the time dimension, firm f may postpone entry to any point τ00 in [τf , τ−f ] during which it is protected from

preemption.
27The reasoning is similar to the choice of price in a Bertrand duopoly, with asymmetric marginal costs, when the

low-cost supplier maximizes its profit by charging a price almost equal to the rival’s marginal cost.
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Proposition 5 (complementarity) For all y−f > Y0 :

d2L(y−f )

dy−fdλ
=

d2F ∗(y−f )

dy−fdφ
=

β

r − α

�
y−f
y∗01

�β−1
π10 > 0.

Therefore, the marginal effect of an increase in the profit ratio λ (for a greater first-mover advantage) on

the leader’s constrained preemption equilibrium value increases in y−f , which is the value-maximizing

entry trigger. A reduction in φ (for a lower flow profit to the second-mover) results in the exact

opposite effect on the follower’s value.

Given this complementarity, for a given y−f the leading firm does not necessarily enter at the same

point in time in the Cournot and in the Stackelberg contexts. Therefore, the exact comparison of firm

values across the two scenarios of market competition depends on the level of the trigger constraints.

The analysis of extreme cases is straightforward. If y−f ≤ yp00, all (φ, λ), limited alertness has no

impact on the equilibrium of the investment game. With a first-mover advantage, a more interesting

situation occurs if yp00 < y−f < ypC (i.e., the stronger trigger constraint is sufficiently mild as to bind

only in the preemption equilibrium with no first-mover advantage). In that case, the leader enters

earlier than in the unconstrained benchmark Cournot scenario (perfect alertness and symmetric flow

profits), and still for a higher investment option exercise value, at the expense of the follower. This is

made more formal in the following result:

Proposition 6 Suppose that φ < λ: (1) There exists a unique ŷ in
�
yp00, y

p
C

�
such that L(y−f ) >

LC(y
p
C) if and only if y−f > ŷ; (2) There exists a unique y̌ > ŷ such that F ∗(y−f ) < F ∗C(y

p
C) if and

only if y−f < y̌.

Proof See Appendix A5. �

The comparison ŷ < ypC indicates that the trigger constraint of the less alert firm needs not be

strong for the short-run first-mover advantage to result in more equilibrium value. Whenever y−f lies

in (ŷ, ypC), so that it cannot bind in the benchmark scenario, the leader’s value, at y−f , is higher with

a first-mover advantage, although the firm still enters before Yt reaches ypC , that is, earlier than in the

free preemption equilibrium trigger of the Cournot case. On the other hand, the follower’s equilibrium

value is lower than (or the same if φ = λ) in the Cournot benchmark with perfect alertness, provided

that the leader enters at any y−f below min{yL00, y̌}, where the latter threshold is defined above ŷ.

5.3 The Effect of Growth and Volatility

This section discusses the effect of a change in the parameters that appear in the geometric Brownian

motion, namely α (growth) and σ (volatility), on the investment triggers and on the related value of

firms. Toward this aim, define G(y) ≡ L(y)− F ∗(y) for any y in the interval (0, yL00]. Recall that yp00,
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which is included in the latter interval, is implicitly defined by G(yp00) = 0, and that G(y−f ) > 0 for

all y−f in (yp00, y
L
00].

� Growth For all y ≤ yL00, if 0 < φ ≤ γ ≤ λ ≤ 1 one finds

dG(y)

dα
=

∂G(y)

∂β� �� �
>0

dβ

dα����
<0

+
∂G(y)

∂α� �� �
≥0

� 0. (9)

Hence the effect of α on yp00 and on firms’ value is ambiguous.28 A higher drift may decrease or increase

the difference between L(y) and F ∗(y) at any level of y ≤ yL00, implying that yp00 either increases or

decreases, respectively. In the former case only, the continuity of value functions (hence of yp00) in

α implies that more growth amounts to relaxing the trigger constraints, so that a free preemption

equilibrium is more likely.

Example 1 Suppose that Y0 < yf ≤ y−f . Let r = 3/4, α = 1/4, and σ = 1/2, together with πF = 1/4,

πL = 1/2. Solve G(y) = 0 leads to yp00|α=1/4, which can be written as a function of π10 and I. Then

dG(y)/dα, when evaluated at yp00|α=1/4, reduces to a simple expression that is positive (zero) if and

only if π10 is less than (equal to) 7/4.

Therefore, in a free preemption equilibrium the impact of a change in α on firms’ value is also

ambiguous. However, in a constrained equilibrium the payoffs are measured at y−f , which does not

depend on α. Then, firms’ value can only increase with growth, both with simultaneous and sequential

(preemption) investments.

� Volatility For all y ≤ yL00, we have

dG(y)

dσ
=

∂G(y)

∂β� �� �
>0

dβ

dσ����
<0

< 0. (10)

The effect of σ on the difference G is thus univocal. Since (10) holds on the interval (0, yL00], the impact

of a change in σ on the level of Yt at which entry occurs can be inferred from the negative sign of

dG(y)/dσ.

Proposition 7 The higher the volatility σ, the higher the threshold yp00. Therefore, a free preemption

equilibrium is more likely.

In a free preemption MPE, the leader enters later as σ increases, at a higher yp00 (a consequence

of L(y) � F ∗(y) if and only if y � yp00).
29 The follower enters later also, at a higher y∗01 (this is

28All derivations in this section are straightforward. They are available from the author upon request.
29The negative sign of (10), and consequently the claim that yp00 increases with σ, hold for π10 ≥ πL. When π10 < πL,

which may occur when the follower’s investment is assumed to be highly beneficial to the leader (positive externality),

Mason and Weeds (2009) find that more uncertainty can lower the leader’s trigger point.
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because dy∗01/dσ = (∂y∗01/∂β) (dβ/dσ) > 0).30 At this level of generality, the sign of the change of the

difference between yp00 and y∗01, and of the two firms’ equal value F ∗(yp00) = L(yp00), is indeterminate.

In a constrained MPE, there are two cases. If the equilibrium investments are simultaneous (see

case 2 in Proposition 3), the two firms’ value is S(yS), which does not depend on σ. Otherwise,

investments are sequential (preemption), the leader’s entry date remains the same (Yt ≥ y−f binds,

where y−f does not depend on σ), and again the follower enters later, so that the difference between

the two firms’ respective investment triggers increases also.31 Then (10) informs on the effect of a

change in σ on G(y−f ). At the firm level,

dF ∗(y)

dσ
=

∂F ∗(y)

∂β� �� �
<(=)0

dβ

dσ����
<0

> (=)0, all y < (=)yL00, (11)

and πL < (=)π10 implies

dL(y)

dσ
=

∂L(y)

∂β� �� �
>(=)0

dβ

dσ����
<0

< (=)0 iff y < (=)y∗01 exp(−1/β). (12)

Consider the two derivatives at y−f ≤ yL00. When the derivative is negative (positive), more volatility

penalizes (benefits) the leading firm f . As y∗01 exp(−1/β) < yL00 if and only if φ > exp(−1/β), firm f ’s

equilibrium value increases with σ only when φ is sufficiently high for the entry threshold y−f to be

possibly in the interval (y∗01 exp(−1/β), y
L
00], in which case more volatility benefits firm f also.

Example 2 Suppose that Y0 < yf ≤ y−f , r = 3/4, α = 1/4, and σ = 1/2, together with πF = 1/2,

π10 = 3/4, I = 1/2. With these values φ > exp(−1/β), so that dL(y−f )/dσ is negative (zero)

if y−f < (=)y∗01 exp(−1/β), and positive otherwise. In particular dL(y−f )/dσ|y−f=yp00
< 0, while

dL(y−f )/dσ|y−f=yL00
> 0.

To summarize:

Proposition 8 In a constrained sequential equilibrium (preemption), higher volatility reduces the posi-

tive rent differential, with the leading firm’s value L(y−f ) decreasing if and only if y−f < y∗01 exp(−1/β),

and the follower’s value F ∗(y−f ) increasing for all y−f ≤ yL00. More uncertainty also increases the

(stochastic) duration between the two firms’ investment.

30It is easy to check that ∂y∗01/∂β < 0.
31An increase in σ does not change the level of Yt at which the leader enters until yp00 (which does depend on σ) reaches

y−f from below, in which case one gets back to a free preemption equilibrium.
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6 Final Remarks

The source of rent investigated in this paper is a limitation in firms’ relative ability to detect a

burgeoning demand. Absent this limitation, from an ex-ante viewpoint an entrepreneurial competitor

cannot benefit from the market advantage it seeks by vying for the lead position. It only results

in exacerbated competition in the investment process, hence in more rent dissipation. The perfect

alertness assumption must be relaxed for a first-mover advantage to result in more value to the leader.

This contradicts common wisdom, which sees only virtue in the ability to move fast. In this framework,

a long duration between the entry dates of two competitors, as observed on a growing market, is no

indication of a proportionally large gap in the managers’ abilities to seize new opportunities. It

follows that, in the illustrative case of the market for music downloads, where Apple clearly benefits

from a persistent first-mover advantage, the late introduction of Zune by Microsoft should not be

interpreted as blatant evidence of a timely inability to detect a new demand. It is consistent with a

value-maximizing behavior when the difference in investors’ “vistas” is only minor, and the market

development process is highly volatile.

Provided that proxies for investment constraints can be measured in real-world circumstances,

several theoretical outputs of this paper can be tested empirically. In particular, if in a nascent

market the value of an early investor — as approximated ex post by the capital market value — can be

observed to benefit a first mover, one may conjecture that the industry is not that prompt at detecting

a new demand, or that uncertainty is reduced. If early entry does not result in large intra-industry

profit differentials, it is likely that the perspective of a persistent first-mover advantage results in

unleashed rent-seeking behavior, and that the level of future demand is highly uncertain. There is no

a priori reason to assume, on purely analytical grounds, that the latter case is more frequent than the

former.
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Appendix

A1. Strategies32

The information set for each firm is ht ≡ (Yt, (i, j)t). The state variables Yt ≥ 0 and (i, j)t ∈ {0, 1}
2

describe the industry-wide shock and the two firms’ installed capacities, respectively.

Given a history ht of state variables, denote by Af (ht) the set of firm f ’s pure actions available

at t. As in our model a firm faces only two possible actions in the investment stage (it may either

invest only once or not), so that the investment process stops as soon as each firm holds one capacity

unit, we have Af (ht) = {invest,wait} if (i, j)t < (1, 1), and Af (ht) = {wait} otherwise. Then, denote

by
�
αf (ht) , 1− αf (ht)

�
∈ [0, 1]2 a probability distribution over the elements of Af (ht), with αf (ht)

defined as the probability of investing at time t. (With symmetric notations for firm −f .)

At any t, firm f chooses a behavioral investment strategy:

Definition 1. A behavioral investment strategy of firm f at time t is a map which assigns to each his-

tory ht of state variables a probability distribution
�
αf (ht) , 1− αf (ht)

�
over the elements of Af (ht).

33

32The first formal treatment of premption appears in Fudenberg and Tirole (1985) in a deterministic framework.

Huisman and Kort (1999) extend it to a stochastic environment. Here we adapt the recent presentation by Chevalier-

Roignant, Huchzermeier, and Trigeorgis (2010).
33If (i, j)t ≥ (1, 1), implying that Af (ht) = {wait}, the distribution degenerates to (0, 1).
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For simplicity, in what follows we slightly abuse terminology by referring to αft ≡ αf (ht) as firm

f ’s behavioral investment strategy at time t. To characterize the chosen strategies, suppose that no

firm has invested yet at t, and consider a 2× 2 game Γ in which each firm can choose either to invest

or to wait. In strategic form:

−f

invest
�
α−ft

�
wait

�
1− α−ft

�

invest
�
αft

�
S(y), S(y) L(y), F ∗(y)

f

wait
�
1− αft

�
F ∗(y), L(y) V (αft , α

−f
t ), V (αft , α

−f
t )

Figure 2: The 2× 2 game Γ, for all t ≥ 0 (first payoff for f , second payoff for −f).

In the strategic-form representation of Γ, the function V f : [0, 1]2 → R1+ describes firm f ’s present

expected value of replaying the same game as a function of the two firms’ respective probabilities of

investing, αft and α−ft . In that case, firm f ’s expected value of replaying the game verifies the recursive

expression

V f (αft , α
−f
t ) =

αft α
−f
t S(y) + αft (1− α−ft )L(y) + (1− αft )α

−f
t F ∗ (y) + (1− αft )(1− α−ft )V f (αft , α

−f
t ),

where F ∗(y), L(y), and S(y) are defined in (4), (5) and (6). Here the displayed expression of

V f (αft , α
−f
t ) is firm f ’s value for a history ht, with a symmetric expression for −f . Moreover, with a

Markov refinement, only the current state values are used, for any information set, in the definition

of the value functions F ∗(y), L(y), and S(y). This leads to the following solution concept:

Definition 2. At any t ≥ 0, given ht, a pair of behavioral strategies (α̂ft , α̂
−f
t ) is a Markov Nash

equilibrium of Γ if V f (α̂ft , α̂
−f
t ) ≥ V f (αft , α̂

−f
t ) and V −f (α̂ft , α̂

−f
t ) ≥ V −f (α̂ft , α

−f
t ), all αft , α

−f
t .

For subgame perfection, the condition must hold at each point in time.

Definition 3. A collection of behavioral strategies {(α̂ft , α̂
−f
t )}t≥0 is a subgame perfect Markov Nash

equilibrium if for every t ∈ [0,∞) the pair of behavioral strategies (α̂ft , α̂
−f
t ) is a Markov Nash equilib-

rium of Γ.

The next step is to compute equilibrium strategies. For all (αft , α
−f
t ) �= (0, 0), a reorganization of

terms gives

V f (αft , α
−f
t ) =

αft α
−f
t S(y) + αft (1− α−ft )L(y) + (1− αft )α

−f
t F ∗ (y)

αft + α−ft − αft α
−f
t

, (14)
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which describes firm f ’s objective for a given ht as a function of its own strategy αft and of the rival’s

strategy α−ft . The first-order derivative of V f in αft is

∂V f (αft , α
−f
t )

∂αft
= α−ft

α−ft (S(y)− L(y)) + L(y)− F ∗ (y)
�
αft + α−ft − αft α

−f
t

�2 . (15)

with a symmetric expression for −f . The sign of the derivative in (15) is the same as the sign of

the numerator, which depends on the comparison of S(y) with L(y), and of L(y) with F ∗(y). If the

numerator is zero, the value V f (αft , α
−f
t ) does not depend on αft , and there is no cost to specify that

firm f plays the same strategy as what is obtained when the numerator is either negative or positive.

We already know from Lemma 2 that S(y) < (=)F ∗(y) if and only y < (=)ỹ ∈ (yp00, y
∗
01), and

from the definitions in (5-6) that S(y) < (=)L(y) for all y < (≥)y∗01 whenever πC < (=)π10 (the

instantaneous market profit to the leader is π10 ≥ πC when y < y∗01 and is followed by πL ≥ πC when

y ≥ y∗01, while the profit is πC all along in case of simultaneous investment). It remains to consider

the partition of the support of y in three intervals, as follows.

Case 1: y < ȳp00. We know from above that S(y) < L(y), and from (5) and (6) that L (y) < F ∗ (y).

It follows from (15) that
∂V f (αft ,α

−f
t )

∂αft
< 0 and

∂V −f (αft ,α
−f
t )

∂αft
< 0, for all (αft , α

−f
t ), implying that

f and −f maximize V f and V −f , respectively, by choosing the lowest possible probability of

investing. Therefore, the unique equilibrium is α̂ft = α̂−ft = 0.

Case 2: ȳp00 ≤ y < ȳ∗01. Again S(y) < (=)L(y) for all y ≤ y∗01, and we know from (5-6) that L (y) >

(=)F ∗ (y) if yp00 < (=) y < y∗01. Therefore, the sign of the derivative in (15) is a priori indeter-

minate. There are now two situations that depend on the level of y relative to ỹ.

First, if y < (=) ỹ, we have S (y) < L (y) and S (y) < F ∗ (y) , which leads to three subcases that

depend on the level of α−ft :

(i) Suppose that 0 ≤ α−ft < L(y)−F∗(y)
L(y)−S(y) , implying that

∂V f (αft ,α
−f
t )

∂αft
≥ 0, for all αft . Then firm f

maximizes V f by choosing αft = 1. Hence
∂V −f (1,α−ft )

∂α−ft
= S(y)−F ∗ (y) < (=) 0 for all y < (=) ỹ,

so that −f maximizes V −f with α−ft = 0, and the solution is asymmetric.

(ii) Suppose that L(y)−F∗(y)
L(y)−S(y) < α−ft ≤ 1, implying that

∂V f (αft ,α
−f
t )

∂αft
< 0, for all αft . Then firm f

maximizes V f by choosing αft = 0. This implies in turn that
∂V −f (0,α−ft )

∂α−ft
= 0, for all α−ft > 0

sufficiently high to satisfy the initial supposition, leading to an asymmetric solution.
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(iii) The last possibility is α−ft = L(y)−F∗(y)
L(y)−S(y) , implying that

∂V f (αft ,α
−f
t )

∂αft
= 0, all αft ∈ [0, 1]. The

latter continuum renders admissible the unique symmetric strategy

α̂ft = α̂−ft =
L(y)− F ∗(y)

L(y)− S(y)
, (16)

so that firm values are V f (α̂ft , α̂
−f
t ) = V −f (α̂ft , α̂

−f
t ) = L(y) = F ∗(y) > S(y).

Only in (iii) we have symmetry. From here on we focus on this case. Then (16) implies that α̂ft =

α̂−ft describes a non zero probability of simultaneous entry for all y ∈ (yp00, y
∗
01), with limy→yp00

α̂ft =

limy→yp00
α̂−ft = 0, and α̂ft

���
y=ỹ

= α̂−ft

���
y=ỹ

= 1.

Second, if y > ỹ then α−ft (S(y)−L(y)) + L(y)− F ∗ (y) > 0, so that
∂V f (αft ,α

−f
t )

∂αft
≥ 0 from (15),

all α−ft ≥ 0. Then firm f maximizes V f with αft = 1. Hence
∂V −f (1,α−ft )

∂α−ft
= S(y)−F ∗ (y) > 0, so that

−f maximizes V −f with α−ft = 1, leading to a symmetric solution:

α̂ft = α̂−ft = 1. (17)

Case 3: y∗01 ≤ y. By definition F ∗(y) = L(y) = S(y), implying from (14) that V f (αft , α
−f
t ) =

V −f (αft , α
−f
t ) = S(y) also, with both firms investing immediately, hence α̂ft = α̂−ft = 1.

A2. Proof of Lemma 1

The value function F ∗(y), which is strictly increasing with y, is also strictly convex as

d2F ∗(y)

dy2
=

Iβ

y2

�
y

y∗01

�β
> 0, (18)

all y > 0, while L(y) is strictly (weakly) concave if and only if πL < (=)π10 because

d2L(y)

dy2
=

β (β − 1)

y2

�
y

y∗01

�β πL − π10
r − α

y∗01 < (=)0, (19)

all y > 0. It follows that F ∗(y)− L(y) = 0 may admit up to two roots. Consider first the benchmark

case φ = λ (Cournot), implying that y∗C ≡ y∗01|φ=λ is a root. Then F ∗C(0) = 0 > LC(0) = −I, together

with

dF ∗C(y)

dy

����
y=y∗

C

=
πC

r − α
>

dLC(y)

dy

����
y=y∗

C

=
πC

r − α
− (β − 1)

π10 − πC
r − α

, (20)

are sufficient to conclude that there exists another positive root ypC < (=)y∗C if πC < (=)π10. Then,

consider the more general case φ ≤ γ ≤ λ. Define F ≡ F ∗ − F ∗C and L ≡ L − LC , to compare the
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slopes of F ∗(y) and L(y) with the slopes of F ∗C(y) and LC(y), respectively. Recalling that β > 1, we

find

dF(y)

dy
=

I

y

β

β − 1

��
y

y∗C

�β
−

�
y

y∗01

�β�

< 0 (21)

if πF < πC , and

dL(y)

dy
=

β

r − α

��
y

y∗C

�β−1
(π10 − πC)−

�
y

y∗01

�β−1
(π10 − πL)

�

> 0 (22)

if πC < πL, all y > 0. In the Stackelberg scenario the slope of the second entrant’s value function

is strictly lower than in Cournot, whereas the slope of the first entrant’s value function is higher.

Together with F ∗ (0) = F ∗C (0) = 0 and L (0) = LC (0) = −I, this leads to the conclusion that F ∗ and

L intersect at a lower y than F ∗C and LC . This establishes that yp00 < ypC . In addition, it is sufficient

to check that F ∗(y∗01) < limy↑y∗01
L(y) when φ < λ to conclude that F ∗ and L cannot intersect for any

y > yp00 on which the value functions are defined. �

A3. Proof of Lemma 2

Set φ = 1. From (4) and (6), the slope of F ∗(y) is (weakly) lower than the slope of S(y) for all

y < (=) y∗01. Then F ∗(y) = 0 > S(y) = −I and limy↑y∗01
F ∗(y) = S(y∗01) imply that F ∗(y) > (=)S(y∗01)

for all y < (=) y∗01. Moreover, it is immediate to check that the slope of F ∗(y) is monotone decreasing

when φ departs from 1 toward 0, while S(y) is unchanged, for all y ≤ y∗01. It follows that there exists

a unique ỹ in (0, y∗01) such that F ∗(y) > (=)S(y) if and only if y < (=) ỹ, with ỹ strictly monotone

increasing in φ, and limφ↑1 ỹ = y∗01.

Next, observe from (5) that L∗(y) is strictly concave, while S(y) is linear, for all y < (=) y∗01,

so that L∗(y) − S(y) = 0 has at most two roots. We know that L∗(0) = S(0), and for φ = λ that

L∗(y∗01) = S(y∗01). As L (y) gets steeper when λ/φ rises (Remark 1), while S (y) in (6) is unchanged,

we have L∗(y) > S(y), all y ∈ (0, y∗01), including ỹ, hence L∗(ỹ) > S(ỹ) = F ∗(ỹ). Then it is sufficient

to recall that L∗(y) > F ∗(y) if and only if y > yp00 to obtain ỹ > yp00. Finally, as limφ↓0 F
∗(y) = 0,

while S (y) is unchanged, when πF approaches 0 the root ỹ converges to the solution to S (y) = 0,

that is r−α
πC

I. �

A4. Proof of Proposition 3

The probability that only one firm, say f , invests as a leader, while −f waits and invest as a

follower, is given by pfL = αft

�
1− α−ft

�
+
�
1− αft

��
1− α−ft

�
pfL. For all (αft , α

−f
t ) �= (0, 0), a

reorganization of terms gives

pfL = αft
1− α−ft

αft + α−ft − αft α
−f
t

. (23)
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Next, the probability of simultaneous investments is pS = αft α
−f
t +

�
1− αft

��
1− α−ft

�
pS . For

all (αft , α
−f
t ) �= (0, 0), a reorganization of terms gives

pS =
αft α

−f
t

αft + α−ft − αft α
−f
t

. (24)

In a symmetric equilibrium αt = αft = α−ft , (23) and (24) simplify to pfL = 1−αt
2−αt

and pS = αt
2−αt

.

It remains to plug in the latter expressions the equilibrium strategies
�
α̂ft , α̂

−f
t

�
derived in Appendix

A1. Again there are two cases that depend on the level of y relative to ỹ :

◮ If yp00 ≤ y < ỹ, the symmetric equilibrium strategies α̂ft = α̂−ft = L(y)−F ∗(y)
L(y)−S(y) in (16) give

pfL(y) =
F ∗(y)− S(y)

L(y) + F ∗(y)− 2S(y)
and pS(y) =

L(y)− F ∗(y)

L(y) + F ∗(y)− 2S(y)
. (25)

Then L(yp00) = F ∗(yp00) ⇒ pfL(y
p
00) = 1

2 > pS(y
p
00) = 0, and L(y) > F ∗(y) ⇒ pS(y) > 0 for all

y ∈ (yp00, ỹ).

◮ If ỹ ≤ y < y∗01, the symmetric equilibrium strategies α̂ft = α̂−ft = 1 in (17) lead to

pfL(y) = p−fF (y) = 0 and pS(y) = 1. (26)

In Proposition 3, (7a) and (7b) result directly from (25), and (8) results from (26). �

A5. Proof of Proposition 6

(1) From Proposition 2 we know that φ < (=)λ implies L (yp00) < (=)LC
�
ypC
�
, with yp00 < (=)ypC .

Moreover LC(y) < (=)L(y) for all y > 0 (from (22)), implying that LC
�
ypC
�

< (=)L
�
ypC
�
, hence

L (yp00) < (=)LC
�
ypC
�
< (=)L

�
ypC
�
by transitivity. As L is monotone strictly increasing in y ≥ 0,

when φ < λ there exists a unique ŷ in (yp00, y
p
C) such that L(y) < LC(y

p
C) iff y < ŷ.

(2) We know from Remark 2 that γ < (=)1 implies ypC < (=)y∗C , and from (4) that F ∗C is monotone

strictly increasing in y ≥ 0, implying in turn that, for all ypC > 0, we have 0 < F ∗C(y
p
C) < (=)F ∗C(y

∗
C).

The latter inequality, together with F ∗C(y
∗
C) = F ∗(y∗01) = I/ (β − 1), leads to 0 < F ∗C(y

p
C) < (=)F ∗(y∗01)

by transitivity. Recalling that F ∗(0) = 0 and that F ∗ is also monotone increasing in y ≥ 0, there exists

a unique y̌ in (0, y∗01] such that F ∗(y) < (=)F ∗C(y
p
C) iff y < (=)y̌. As a consequence, recalling that

φ < (=)γ implies F ∗(y) < (=)F ∗C(y) for all y > 0 (from (21)), we have ypC < (=)y̌. Then ŷ < (=)ypC

implies ŷ < (=)y̌. �
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