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Abstract

The tree cutting problem of forest management is an archetypal investment problem; it involves
time, uncertainty, and irreversible actions with consequences in the future. The exercise of the
option to cut a tree opens the option of planting a new one or of using the land for alternative
purposes. We enrich the tree cutting problem by considering the planting decision too with
no cost associated with harvesting or planting. Two tree species are available; their growth is
deterministic but their timber unit price is stochastic. In the case of a single rotation, known as
the Wicksellian tree cutting problem, the forest manager should plant one species immediately
if its price is suffi ciently high relative to the price of the other species. However, if prices
are close to each other, the manager should wait in order to avoid the mistake of planting
the wrong species. Waiting should last until the prices are suffi ciently far apart to make the
probability of a future price reversal acceptably low. In contrast, when the number of rotations
is arbitrarily high, as in Faustman’s problem, waiting before planting the new tree, whatever
its species, is never optimal once a harvest has taken place. However, the optimal cutting
age depends on the relative timber price. We show that the optimum cutting age increases
when the relative price approaches a threshold value signalling the necessity to switch to the
alternative species. This is because the decision maker would rather wait than plant the wrong
species; letting existing trees grow older is a way to postpone the choice. We also show that
the land value increases with the uncertainty of timber prices. The stand value is similar to
the value of an American option with a free boundary and an expiry date equals to infinity
but with endogenous payoff.
key words: Real options; stochastic prices; American options; free boundary; penalty method;
forestry; Faustman; alternative species; rotation.
J.E.L. classification: C61; D81; G11; G13; Q23.



Résumé

La décision de couper un arbre en gestion forestière est l’archétype du problème d’investissement;
il implique le temps, l’incertitude ainsi que l’irréversibilité d’actions ayant des conséquences
dans le futur. L’exercice de l’option de couper un arbre donne naissance à l’option de planter
un nouvel arbre ou bien d’utiliser la terre à d’autres fins. On enrichit ce problème en consid-
érant aussi la décision de planter. Deux essences d’arbres sont disponibles; leurs fonctions de
croissance sont déterministes mais les prix de leurs bois sont stochastiques. Lorsqu’une seule
rotation est envisagée, il s’agit du problème dit de Wicksell; le gestionnaire forestier plante
immédiatement une essence si le prix de son bois est suffi samment élevé relativement au prix
de l’autre essence. Cependant, si les deux prix sont proches, le gestionnaire doit attendre dans
le but de ne pas commettre l’erreur de choisir la mauvaise essence. L’attente doit se prolonger
jusqu’à ce que les prix se distinguent suffi samment de telle sorte que la probabilité que l’ordre
des prix s’inverse dans le futur devienne suffi samment faible. En revanche, quand le nombre de
rotations est illimité, on se réfère au problème de Faustman; il n’est jamais optimal d’attendre
avant de planter une essence une fois qu’une récolte a eu lieu. Cependant, l’âge des arbres à la
récolte dépend du prix relatif de leur bois. On montre que l’âge optimal à la récolte croît quand
le prix relatif est suffi samment proche d’un seuil signalant la nécessité de planter l’essence al-
ternative. Ceci est expliqué par le désir du gestionnaire d’attendre plutôt que de planter la
mauvaise essence; laisser croître plus longtemps les arbres est une manière de reporter la prise
de décision. La valeur d’un terrain planté est similaire à la valeur d’une option américaine avec
une frontière libre et une échéance infinie d’expiration mais un paiement endogène.
mots clés: Options réelles; prix stochastiques; options américaines; frontière libre; méthode de
pénalité; essences alternatives; rotation.
Qualification JEL: C61, D81, G11, G13, Q23.



1. Introduction

Forest management is an archetypal investment problem; it involves time; it involves

uncertainty; it involves irreversible actions with consequences in the future. It also

exemplifies investments that open up new options: cutting a tree opens the option

of planting a new one or using the land differently. Faustman (1849) gave forestry

economics its foundations by addressing the question: at what age should a stand of

even-aged trees be harvested? He did so under the assumption of constant timber

prices by comparing the net marginal benefits from letting timber grow further, to the

opportunity cost of existing trees plus the opportunity cost of the land, itself a function

of timber management decisions.

Faustman’s original problem has been refined and generalized in many ways. In

this paper we focus on the availability of alternative species to replace the trees being

harvested. We show how this choice should be made and timed, and how it affects

the harvesting decision. While species choice is clearly important for the forester, that

question has much wider relevance and may be viewed as illustrating a general investment

problem. The question of choosing a harvest age is akin to that of deciding when an

equipment should be retired; the species choice is similar to the choice of alternative

technologies for replacement. Thus we introduce alternative projects in situations where

decisions open up new options in a process that repeats itself indefinitely, and must

be reevaluated at each instant. This most common practical situation has not been

investigated theoretically before, although both the real option literature and the forestry

literature have gone some way toward solving that problem.

The real option approach has been widely applied in natural resources exploitation

and management. In the real option framework, a typical investment involves an opti-

mum stopping rule, the choice of the date at which the decision maker considers that

conditions have become favorable enough to justify committing resources irreversibly.

A typical result is that more uncertainty postpones investment although it increases

project value.



Applying this approach, a number of studies examine the optimal harvesting age in

forestry under stochastic timber price. The focus has mainly been on optimal harvesting

when observing stochastic timber prices as in Brazee and Mendelsohn (1988) and Insley

(2002). Willassen (1998) dismisses the optimal stopping methodology and uses impulse

control. These studies show that when timber prices or stand value follow a Brownian

motion and in absence of management costs, the solution is similar to the deterministic

case. However, when management costs are considered, the expected value of the stand

is increased by considering a reservation price policy that exploits stochastic variations

in prices. Uncertainty provides an incentive to postpone harvest and delay management

costs until observing future prices and schedule harvests accordingly. Platinga (1998)

shows that the option value to delay harvest when timber prices are stationary stems

from the level of the stumpage price with respect to the long-term mean and the stand

value with respect to fixed management cost. Over time, applications have been extended

to include more and more problems, such as differentiated timber prices (Forboseh et

al., 1996), uneven-aged management (Haight, 1990), multi-species stands under changing

growth conditions caused by climate change (Jacobsen and Thorsen, 2003).

The recent real option literature has begun to treat situations where an action of the

decision maker simultanously involves a choice between alternative opportunities and

choosing the timing of an investment. These alternative opportunities may differ with

respect to investment costs and output amount as in Decamps et al (2006) or benefit

trajectories as in Kassar and Lasserre (2004). An interesting result in such situations is

that a new reason for postponing action arises. When the alternatives are too close to

each other and uncertain, the decision maker may choose to wait in order to avoid choos-

ing an alternative that might prove to be less desirable than another candidate in the

future. This inaction may be optimal although each project, taken in isolation, would

satisfy the requirements for immediate investment under conditions of irreversibility and

uncertainty. Although the forestry literature has considered choices between alternative

options (Reed, 1993; Conrad, 1997; Abildtrup and Strange, 1999) such as the invest-

ment problem of stand establisment, no attention has been devoted to the hysteresis
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possibly induced in such circumstances. Furthermore, when simultanous alternatives

were considered, the future stand value was treated as exogenous, independent of the

current choice. For instance, Thorsen (1999a) analyses the choice of tree species for

afforestation as a real option problem, and Thorsen and Malchow-Møller (2003a) extend

it to a two-option problem with two mutually exclusive options (two tree species), where

exercising one option implies losing the other. Jacobsen (2007) goes one step further:

upon harvest, the current stand (of spruce) may be allowed to regenerate naturally and

costlessly, or may be replaced with oaks at some cost. However, it is assumed that at

some finite time horizon oaks will be definitely planted so that the problem eventually

simplifies to the indefinitely repeated single-species problem of Faustman, with stochas-

tic price. Finally, it is not certain whether the age at which harvest is optimal is higher

or lower than Faustman’s or Wicksell’s rotation.

To our knowledge our paper is the first one involving an indefinitely repeated choice

between options. Given an existing stand composed of one of two possible species, the

decision maker chooses the harvest age. Then, she decides which species or which pro-

portion of species should be used to repopulate the land, where timber prices evolve

stochastically, possibly with some correlation. Then again, and forever, harvests times

and species choices must be decided optimally. To draw again on the analogy with

equipement retirement and replacement, equipment may be retired at any age and re-

placed with any of two alternative technologies where the effi ciency of each technology

evolves stochastically as suppliers improve their products. It is not certain that one type

will dominate the other for long, let alone forever.

The general setting and assumptions are introduced in Section 2. After harvesting,

the land may be repopulated with any combination of two tree species; the new crop may

be established right after the harvest or at any later time. Each species is characterized

by a different, stochastic, timber price process and by a distinct, although not stochastic,

growth function. In Section 3, we investigate the case of a single rotation, also known as

Wicksell’s tree cutting problem. Stochastic versions of that problem for a single species

have been discussed by Willassen (1998). With two species implies one should consider
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the species choice and its timing, before considering harvest. A form of hysteresis not

previously identified in the literature arises: under some conditions about relative species

prices, the decision maker waits rather than establishing a crop, despite the fact that

each species would be worth planting in isolation. In Section 4 we extend the analysis to

multiple rotations. The decision maker must decide at what age the trees of the current

stand must be cut; after harvest she must decide whether she should establish a new crop

or wait; when she makes such decision, she must choose one, or the other, species. This

process is repeated indefinitely. We find that the hysteresis of the Wicksellian problem

disappears.

The qualitative properties of the decision rules and value functions are described

analytically and presented in a number of propositions.2 In particular, we show that,

under uncertainty, the stand value is similar to the value of an American option with

a free boundary and an expiry date equal to infinity but with endogenous payoff. The

analysis is completed with a numerical resolution based on the penalty method (Zvan

et al 1998) applied simultaneously to the stand value function of each species, and

on a Newton iterative process applied to the land value. We show analytically that

the optimum harvest age increases when the relative price approaches some threshold

value signalling the necessity to switch to the alternative species. This is because the

decision maker would rather wait than plant the wrong species; letting existing trees grow

older is a way to postpone the choice, allowing the prices to become more informative.

Conversely, if the relative price exceeds the switching threshold, the risk of making

a mistake by switching diminishes as the relative price moves further away from the

threshold, so that the reason to postpone harvest becomes less compelling and the

optimum harvest age diminishes. This possibility to postpone harvest explains why

the hysteresis observed in the Wicksellian problem, taking the form of forest land being

left bare until a decision to plant is made, disappears when harvests can be indefinitely

2The assumption that prices follow geometric Brownian motions helps obtain some of the analytical
results. However the numerical treatment does not depend on that assumption and the qualitative
properties of the solution, as well as the intuitive understanding arising from the analytical results still
stand to changes in it.
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repeated. Under uncertainty, land value increases with the volatility of timber prices.

It is continuous and differentiable even around the switching threshold, which renders

profitable arbitrage impossible. Finally, Section 5 concludes.

2. General setting and assumptions

We study the decision by a risk-neutral forest manager to establish one, or any mix, of

two alternative tree species P and P ′ on a plot of bare land. The timber price of species

P (respectively P ′) follows a geometric Brownian motion (GBM) with drift µ (resp. µ′)

and volatility σ (resp. σ′):

dp = µpdt+ σpdz (1a)

dp′ = µ′p′dt+ σ′p′dz (1b)

where time indices have been omitted, dz = ε
√
dt and dz′ = ε′

√
dt are the increments of

Wiener processes, and ε and ε′ are standardized Gaussian white noises whose correlation

is ρ. In the rest of the paper variables that depend on time are indexed unless they are

considered at the current date defined as t = 0, in which case the time index is omitted.

The relative price θ = p′

p
is time variable while δ = r − µ > 0 and δ′ = r − µ′ > 03 are

constant parameters, where r is the discount rate.

Each tree species is characterized by a timber volume growth function with the

following properties:

Assumption 1 There exists a > 0 and a′ > 0, such that the timber volume functions

V (a) and V ′(a) are continuous over [0,+∞[, V (a) = 0 over [0, a], V ′(a) = 0 over [0, a′];

V (a) and V ′(a) are positive, continuous, differentiable and concave over [a,+∞[ and

[a′,+∞[ respectively. In addition, lim
a→+∞

Va(a) = 0 and lim
a→+∞

V ′a(a) = 0.

Volume growth functions usually have a convex initial part and become concave once

the trees have reached some strictly positive age. This implies that it is never optimum

to harvest at an arbitrarily low age. Assumption 1 ensures that this stylized property is

3We assume that δ > 0 and δ′ > 0; otherwise it would be optimal to delay the investment forever.
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satisfied while avoiding delicate and economically trivial complications associated with

the non convexity of the volume functions at low tree ages4. Similarly, we assume

that operational costs (while trees are growing) and harvesting costs are either nil or

accounted for in prices p and p′.

A more consequential assumption is that planting and other initial investment costs

are zero. We make that assumption for two reasons. The first one is theoretical. A key

element of real options decisions is the irreversible commitment of resources at the time a

project is undertaken. When these resources take the form of an irreversible investment

cost, and the future returns of the project are uncertain, they create a deferral option or

an option to wait that is well understood.5 This paper focuses on the option to choose,

once or an indefinite number of times, between two alternatives; this option is best

identified in the absence of sunk costs, an assumption that eliminates the conventional

deferral option impact. The second reason for eliminating investment costs is that this

assumption allows to go further into the analytical resolution of the problems to describe

the impact of the switching option on the investment decision. The numerical method

developed to illustrate the solution and to complement the results can be adapted to a

model involving a positive planting or investment cost.

3. Choosing between two investment projects: an extension of
Wicksell’s problem

"The Wicksellian tree cutting problem" refers to the problem of choosing the age at

which a stand of even-aged trees will be harvested. One single harvest is considered.

The optimal harvesting age is determined by the well-known Wicksellian rule under

which the optimal age is chosen in such a way that the marginal value growth of the

trees is equal to the opportunity cost of holding them.

We modify the stochastic version of Wicksell’s problem in two essential ways. First

4In the numerical illustrations, we use the same volume growth function for both species; this better
isolates the role of the stochastic price processes defined by (1a) and (1b). The volume growth function
used is V (a) = V∞

(
1− e−α(a−a)

)
where V∞ = 100 is the timber volume when the age tends to infinity,

α = 0.01, and a = 10 is the minimum age for positive growth.
5See the references in the introduction.

6



we start with bare land and consider the tree planting decision. Second we study a

situation where two tree species, not simply one, are available. The reasons why these

new features are important are the following. First, since the timber value of each species

evolves stochastically, the revenues derived upon harvest depend on the species initially

planted and on the price reached at harvesting. The harvest value of one species may

overtake the other one, implying that the decision maker may regret the initial choice.

Second, the availability of more than one species opens up the possibility of diversification

that we show is not optimal in the following proposition.

Proposition 1 When two tree species may be grown simultaneously on a forest land, it

is optimal to specialize into one, or the other, species rather than diversify.

Proof. See the appendix.

Proposition 1 indicates that the stand value at planting time is highest when one

single species, rather than a combination of the two species, is established on the plot.

Clearly, however, a combination with lower expected value but less risk might be prefer-

able if the decision maker was risk averse. Let G(p, a) (G′(p′, a)) be the stand value

function when species P (resp. species P ) is in place, the age of the trees is a, and the

current price of the species in place is p (resp. p′):

G(p, a) = max
s
E
[
e−rsV (a+ s)ps

]
(2a)

G′(p′, a) = max
s
E
[
e−rsV ′(a+ s)p′s

]
(2b)

Consider G(p, a). As G(p, a) is homogenous in p, G(p, a) = pg(a) where g(a) ≡ G(1, a).

G(p, a)must satisfy Bellman’s equationEdG = rGda which implies, by Itô’s lemma, that

g(a) satisfies δg(a)−ga(a) = 0. Then g(a) = beδa, where b is a constant to be determined

using the value-matching and smooth-pasting conditions as follows. At cutting age aw

and for any price p, G(p, aw) = V (aw)p, Gp(p, aw) = V (aw), and Ga(p, aw) = Va(aw)p,
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implying g(aw) = V (aw) and ga(aw) = Va(aw). Consequently,

G(p, a) = beδap (3a)

b = V (aw)e−δaw (3b)

Va(aw)

V (aw)
= δ (3c)

where aw is determined implicitly by the last equation as a function of δ independent of

price. In particular when the expected value of timber is constant (µ = 0), the optimum

harvest age is given by condition Va(aw)
V (aw)

= r, which is Wicksell’s rule in the absence of

uncertainty (Willassen, 1998).

To examine the effect of the existence of the second tree species, note similarly that

G′(p′, a) = b′eδ
′ap′ (4a)

b′ = V ′(a′w)e−δ
′a′w (4b)

V ′a(a
′
w)

V ′(a′w)
= δ′ (4c)

In particular, when the age of the trees is zero, the stand value is either bp or b′p′, depend-

ing on the species. If the species is yet to be chosen, the stand value ismaxT Ee
−rT {[bp

T
, b′p′

T

]}
,

where T is the date at which the chosen species will be established. As only one harvest

is possible in Wicksell’s problem, this is also the value of the bare land:

F (p, p′) = max
T

Ee−rT
{[
bp

T
, b′p′

T

]}
. (5)

Since F (p, p′) is homogenous in (p, p′) it can be written F (p, p′) = pf(θ) where θ = p′

p
.

Suppose that the land is currently bear and that it is optimal to wait rather than

establish a new crop at the current time. Then there exists a time interval dt during

which F (p, p′) satisfies Bellman’s Equation EdF = rFdt. This defines the continuation

region in the plan (p, p′). Itô’s lemma implies that f(θ) satisfies:

σ2

2
θ2fθθ(θ) + µθfθ(θ)− δf(θ) = 0 (6)

with σ2 ≡ σ2 − 2ρσσ′ + σ′2 and µ ≡ µ′ − µ = δ − δ′.
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This differential equation has solutions (i.e. the continuation region exists) when its

characteristic equation Q(β) = 0 has real roots, where Q(β) = σ2

2
β(β − 1) + µβ − δ.

This requires the equation to be quadratic and its determinant ∆ ≡ (µ− σ2

2
)2 + 2σ2δ to

be non negative. The equation is quadratic if and only if either σ > 0 or σ′ > 0. If this

condition does not hold, the species yielding the highest return at harvest is known for

any crop establisment time. Since µ < r and µ′ < r, it is more profitable to establish

a given species immediately than later. Consequently it is never optimal to wait before

choosing a species if σ = σ′ = 0. The determinant of the characteristic equation is

strictly positive if and only if (µ = µ′, σ = σ′, ρ = 1) or (µ = µ′, σ = σ′ = 0). In such

cases, prices follow parallel trajectories, so that the higher price will remain so forever; it

is then optimal to invest immediately in the project with the highest price. To rule out

these trivial cases where the continuation region does not exist, we make the following

assumption:

Assumption 2 The future price of at least one species is uncertain i.e. σ > 0 or σ′ > 0

and (µ, σ) 6= (µ′, σ′).

Under Assumption 2, the characteristic equation has two roots β1 > 1 and β2 < 0.

In that case,

f(θ) = b1θ
β1 + b2θ

β2 (7)

where b1 and b2 are two constants. The option value function is then F (p, p′) = pf(θ)

in the continuation region. However, at some levels of θ, it is optimal to invest rather

than wait. Precisely,

Proposition 2 (one rotation) When one of two tree species must be established for a

single harvest, the optimal decision is to leave the land bare unless or until the relative

timber price is out of an interval
[
θ∗, θ

′∗
]
. The first time that the relative price reaches

θ
′∗ from below (resp. θ∗ from above) species P ′ (resp. P ) should be established. Once

species P (resp. P ′) has been established the stand should be allowed to grow until it

reaches its optimal harvest age defined by Formula (3c) (resp. (4c)), which is independent

9



of the relative price. As long as the land is bare, its value is pf (θ) given by (7); once

populated with age a trees of species P (resp. P ′), the land is worth beδap (resp. b′eδ
′ap′)

where b is given by (3b) (resp. b′ is given by (4b)).

Proof. See the Appendix for details not in the main text.

The decision to go ahead with the investment is postponed until timber prices have

differentiated themselves clearly enough. This hysteresis leaves the land bare despite the

fact that it would be unambiguously optimal to plant any of the two species immediately

if the option to establish the other one was not available. In situations where the returns

expected from a project, while high enough to warrant investment in isolation, might in

the future be overtaken by the returns from an alternative project, using such a decision

rule reduces the probability of finding out ex post that the least profitable option was

chosen, irreversibly. Clearly the hysteresis may occur under any parameter combination

satisfying Assumption 2, whether the drifts of the price processes are identical or not,

and whether or not the chosen species is subject to uncertainty.

4. Choosing between alternative replacements repeatedly: an
extension of Faustman’s problem

In order to keep the notation simple, some functions used in Section 3. will be redefined

to account for multiple rotations; otherwise the notation is unchanged.

When only one species P is available, the expected value of harvesting after some

time s a forest stand whose current age is a, and then replanting and harvesting the

same species for an arbitrary number of rotations, is

G(p, a) = max
s
Ee−rs [psV (a+ s) + F (ps)] (8)

where F (p), the land value, solely depends on the current price of the single species

available:

F (p) = max
s
Ee−rs [psV (s) + F (ps)] (9)

Thus, the land value coincides with the stand value at age zero as implied by the as-

sumption that there are no planting or other investment costs; that is F (p) = G(p, 0).
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When the timber price is constant, the optimal harvesting age aF is constant from

one rotation to the next and determined by Faustman’s rule (1849); it is independent of

the timber price and implicitly given by:

Va(aF )

V (aF )
=

r

1− e−raF (10)

The analysis has been extended to situations where the price may change over time

(Brazee and Mendelsohn, 1988; Clarke and Reed, 1989; Morck et al. 1989; Thomson,

1992; Reed, 1993). When the price is governed by (1a) and there are no fixed costs such

as management costs the solution is equivalent to the deterministic solution with the

timber value increasing at a constant exponential established by Newman et al. (1985).6

This body of knowledge implies the following result:

Lemma 1 When the timber price p follows the process (1a), the land value F (p) and

the value of the stand at age a, G(p, a), are homogenous of degree one in p, and the

optimal cutting age is independent of the timber price p, precisely,

G(p, a) = ceδap (11a)

F (p) = cp (11b)

c =
V (af )

eδaf − 1
(11c)

Va(af )

V (af )
=

δ

1− e−δaf (11d)

where af is the optimal harvest age.

Proof. See the appendix .

Both land and forest values F (p) and G(p, a) depend linearly on the current price

of the unique tree species. The optimal harvest age is constant from one harvest to the

next, thus independent of price, and equals the Faustman (constant price) rotation if and

only if the drift of the stochastic timber price process is zero. We call it the generalized

6Saphores (2003) generalizes Faustman’s formula to partial or total harvests in the case of a biomass
whose stochastic growth is stock-dependent and represents the sole source of uncertainty. The optimal
biomass at which harvest should occur is not a monotonic function of uncertainty, which implies that
the relationship with Faustmann’s rotation is ambiguous.
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Faustman age in this paper. It is also smaller than the Wicksellian one-rotation optimal

harvest age given by (3c) as Va(a)
V (a)

is decreasing in a.

We now turn to a situation not previously considered in the literature. Two tree

species P and P ′ are available. The manager has the option to harvest and to replant

the given tract of land with any combination of species, immediately after the harvest

or after any delay, and to harvest again. The process goes on forever as establishing a

new stand opens up the option to harvest, etc. As in the case of a single harvest, it

can be shown that, to an expected value maximizer, any forest diversification strategy

involving growing two species simultaneously would be dominated by one consisting in

establishing one single species if at all. Thus suppose that the problem starts with trees

of either species established on the forest tract. The manager may choose (i) to wait and

observe the stand growing up, or (ii) to harvest the stand and replant the same species

immediately, or (iii) to harvest the stand and plant the alternative species, or finally

(iv) to harvest the stand and wait before planting one or the other species. As before

we assume that there is no fixed cost associated with harvesting and establishing a new

crop, so that the role of the alternative species is highlighted.

Consider the last possibility. After harvesting, the forest manager may wait before

establishing a new crop. Then the land remains bare,7 allowing the manager to wait

until timber prices evolve in such a way that it is easier to choose the right species.

No gain can be achieved by using that strategy, though. Indeed suppose the manager

decides to establish one species at some date t strictly posterior to the harvest. Had she

planted that species immediately after harvest, she would then be better off at t because

the trees would have grown already. Had she planted the other species, she could cut

the trees and plant the preferred species at no cost. In that case she would either be as

well off, if cutting the existing trees produced no income, or she would be better off if

cutting the existing trees produced some income. This proves the following proposition,

which implies that only the first three possible decisions outlined in the past paragraph

7Allowing for costs of keeping the land bare, such as weeding or protection against erosion, would
only reinforce the result.
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need be considered.

Proposition 3 It is optimal to establish a new crop immediately after harvesting.

This result contrasts with the one indicating that it is optimal, in the Wicksellian

two-species single-harvest case, to delay planting when the projects are not clearly dif-

ferentiated. Indeed, the decision to choose a species that turns out to be undesirable ex

post has a lower opportunity cost in case of multiple rotations: trees that turn out to be

less desirable after planting may be cut and replaced with the desirable species. In the

single rotation case, the possibility of a more profitable harvest is lost once the wrong

species is established.

Consider now alternatives (i)− (iii). Let F (p, p′) denote the value of the bare land,

the value of the options to indefinitely plant and harvest the forest tract, choosing the

prefered species P and P each time. Let G(p, p′, a) (respectively G′(p′, p, a)) denote

the value of the forest (land and trees) when the forest tract is populated with trees of

species P (respectively P ) of age a and price p (resp. p′) while the price for the other

species is p′ (resp. p). Precisely,

G(p, p′, a) = max
s
Ee−rs [psV (s+ a) + F (ps, p

′
s)] (12a)

G′(p′, p, a) = max
s
Ee−rs [p′sV

′(s+ a) + F (ps, p
′
s)] (12b)

Lemma 2 When p and p′ follow the processes (1a) and (1b) respectively, F (p, p′), G(p, p′, a),

and G′(p′, p, a) are homogenous of degree one in (p, p′) and the optimal cutting age de-

pends only on the current relative price of timber θ = p′

p
. Furthermore, the following

reduced functions

g(θ, a) =
1

p
G(p, p′, a) (13a)

g′(θ, a) =
1

p
G′(p′, p, a) (13b)

f(θ) =
1

p
F (p, p′) (13c)
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solve the following problems respectively

g(θ, a) = max
s

[
e−δsV (a+ s) + e−δsEf(θs)

]
(14a)

g′(θ, a) = max
s

[
e−δ

′sθV ′(a+ s) + e−δsEf(θs)
]

(14b)

f(θ) = max
s

[
e−δsV (s) + e−δsEf(θs)

]
(14c)

Proof. See the appendix.

As a consequence of Lemma 3, it is certain that the trees being harvested are replaced

immediately. At relative prices below some switching value θ∗, species P is planted if

the land is bare; above θ∗, it is optimal to plant species P on a bare land. It is certain

that θ∗ exists as species P must be chosen when θ tends to zero and species P must be

chosen when θ tends to infinity.

Proposition 4 There exists a unique, strictly positive, value of θ, θ∗ such that, if

θ < θ∗ (respectively θ > θ∗) and the land is bare, it is optimal to plant species P

(respectively species P ) immediately, while indifferently planting P or P on bare land

is optimal if θ = θ∗. Consequently, the reduced land value function is such that

f (θ) = g(θ, 0) = g′ (θ, 0) (15)

Furthermore, f(θ) is strictly increasing in θ with limθ→0 f(θ) = c, limθ→+∞ f(θ) = c′θ,

where c =
V (af )

e
δaf−1

and c′ =
V ′(a′f )

e
δ′a′

f−1
.

Proof. The set of θ > 0 for which it is optimal to plant P is not empty as for θ

positive and suffi ciently small it is optimal to plant P . This set is bounded as for θ

suffi ciently high it is optimal to plant P . Being not empty and bounded, the set of θ > 0

for which it is optimal to plant P has a finite maximum θ∗. The unicity of θ∗ results

from continuity.

The land value function F (p, p′) must be strictly increasing in p; then Fp(p, p′) > 0.

As Fp(p, p′) = fθ(θ) then fθ(θ) > 0 and therefore f(θ) is strictly increasing in θ. When θ

tends to zero, that is when p′ is close to zero while p is strictly positive with p′ � p, P will

14



remain the preferred species and the problem collapses to the single species case. There-

fore, using (11b), lim
θ→∞

pf(θ) = cp or lim
θ→0

f(θ) = c. A similar proof shows that lim
θ→+∞

f(θ) =

c′θ. In the continuation region, G(p, p′, a) = max
s
Ee−rs [psV (a+ s) + F (ps, p

′
s)] , i.e.

G(p, p′, 0) = F (p, p′) or f(θ) = g(θ, 0) if (θ, 0) belongs to the continuation region other-

wise G(p, p′, 0) = F (p, p′) + pV (0) then f(θ) = g(θ, 0) as V (0) = 0. Similarly, one can

show that f(θ) = g′(θ, 0).

We are interested in characterizing the continuation region when species P is in place,

and the continuation region when species P ′ is in place. In either case the continuation

region is the set of points (θ, a) in R+ × R+ where it is optimum to wait rather than

exercise the option of harvesting.8 Suppose that species P is in place, a situation which is

desirable at relatively low values of θ. Clearly there is an age above which it is desirable

to cut the trees so that the continuation region, if it exists, is bounded above (along the

a dimension). Let a+ (θ) denote the upper boundary of the continuation region, the age

above which it is optimum to harvest and below which it is desirable to allow the trees

to grow further, given θ. At high enough values of θ, the alternative species P ′ becomes

so attractive that there is no age at which it would be desirable to allow trees of species

P to grow any further. At such high values of θ, the continuation region of species P

does not exist. Let θ denote the value of θ above which the continuation region does not

exist for any harvest age and below which the continuation region exists for some age.

Thus θ signals the right-hand end of the continuation region.

It can be shown by contradiction that the continuation region exists for any θ < θ.

θ is strictly higher than θ∗. Indeed, at θ = θ∗ the decision maker is indifferent between

stands of either species P or P ′ populated with trees of age zero, which take a period a

or a′ before producing any valuable timber. Then if the stand is populated with trees of

species P whose age is strictly between 0 and a while θ = θ∗, it is preferable to let them

reach some age above a, possibly allowing θ to become greater that θ∗ before cutting

them. This proves that θ∗ ≤ θ. This simple argument also implies that, for values of

the relative price in
[
θ∗, θ̄

]
, it is optimal to allow the trees to continue growing if they

8While θ is the same variable in both continuation regions, a is specific to the species in place.
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are older than some minimum age. Consequently, the continuation region has a lower

boundary a− (θ) > 0 for θ ∈
[
θ∗, θ̄

]
as described in Figures 2 and 1.

A similar analysis applies to the continuation region when species P ′ is in place.

Remembering that θ∗′ ≡ θ′, it follows that θ̄′ ≤ θ∗ and that the continuation region for

P ′ has upper and lower boundaries a+′(θ) on [θ̄
′
,+∞[, and a−′(θ) on

[
θ̄
′
, θ∗
]
. Since the

relative price θ is the same variable in both cases, only considered at different values, one

should note that the expressions corresponding to each region are not the mirror image

of each other, although the analysis obeys a symmetric logic. For example, obviously,

θ̄
′ ≤ θ∗ ≤ θ̄ as species P ′ is desirable at high relative prices and the continuation region

for P ′ does not exist below θ̄
′ by definition of θ̄′.

Precisely, if species P is in place, then the upper boundary a+(θ) is the smallest value

of a such that

arg max
s
e−δs [V (s+ a) + E (f(θs))] = 0. (16)

implying that for θ ∈
[
0, θ̄
]
,

Va
(
a+(θ)

)
− δV

(
a+(θ)

)
= δf (θ)− µ̄θfθ (θ)− 1

2
σ̄2θ2fθθ (θ) (17)

The lower boundary a−(θ) is defined by the conditions

For θ ∈
[
θ∗, θ

]
,


g (θ, a) = V (a) + f(θ), if a = a−(θ)

g (θ, a) > V (a) + f(θ), if a ∈]a−(θ), a+(θ)[
g (θ, a) < V (a) + f(θ), if a ∈ [0, a−(θ)[.

(18)

For θ ∈
[
θ∗, θ

]
and a ∈]a−(θ), a+(θ)[, the condition g (θ, a) > V (a)+f(θ) indicates that,

if the land is populated with trees of species P and age a, it is preferable to allow them

to reach maturity and harvest them at a+(θ), rather than harvesting them immediately

to obtain V (a) plus the expected land value f(θ). For θ ∈
[
θ∗, θ

]
and a ∈ [0, a−(θ)[, the

condition g (θ, a) < V (a) + f(θ) indicates that it is optimal to harvest immediately.

For θ ∈
[
0, θ
]
, if it is optimal to wait and harvest later on, the forest value function

G(p, p′, a) should satisfy Bellman’s equation E (dG(p, p′, a)) = rG(p, p′, a)da which can

be written as the following partial differential equation governing the reduced forest

value function g(θ, a) in the continuation region (proof in the appendix):

σ2

2
θ2gθθ + µθgθ − δg + ga = 0. (19)
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Thus, on the upper boundary a+(θ) of the continuation region, the following value

matching and smooth pasting conditions apply:

g
(
θ, a+ (θ)

)
= V

(
a+ (θ)

)
+ f (θ) (20a)

gθ
(
θ, a+ (θ)

)
= fθ (θ) (20b)

ga
(
θ, a+ (θ)

)
= Va

(
a+ (θ)

)
(20c)

The smooth pasting condition can be written in either of the two forms (20b) or

(20c); given the value-matching condition these two forms are equivalent. It is usefull to

combine the last four equations to derive Equation (21a) linking the land value function

f(θ) to the harvest age on the upper bounary a+ (θ), and Equation (21b), applying when

species P ′ is in place. Equation (21c) is a combination of (21a) and (21b)9 which applies

on the interval
[
θ
′
, θ
]
where both continuation regions exist as illustrated in Figure 3.

σ2

2
θ2fθθ (θ) + µθfθ (θ)− δf (θ) = δV

(
a+ (θ)

)
− Va

(
a+ (θ)

)
, θ ∈

[
0, θ
]

(21a)

σ2

2
θ2fθθ (θ) + µθfθ (θ)− δf (θ) = θ

[
δ′V ′

(
a+′ (θ)

)
− V ′a

(
a+′ (θ)

)]
, θ ∈ [θ

′
,+∞[(21b)

δV
(
a+ (θ)

)
− Va

(
a+ (θ)

)
= θ

[
δ′V ′

(
a+′ (θ)

)
− V ′a

(
a+′ (θ)

)]
, θ ∈

[
θ
′
, θ
]
(21c)

Equation (21a) is a non arbitrage condition and can be rearranged as σ2

2
θ2fθθ (θ) +

µθfθ (θ) +Va (a+ (θ)) = δV (a+ (θ)) + δf (θ); then the right-hand side is the opportunity

cost of waiting, per time unit; the first two terms on the left-hand side give the expected

9One can show that the reduced forest value function g′(θ, a) should satisfy the same partial differ-
ential equation as g(θ, a), that is

σ2

2
θ2g′θθ + µθg

′
θ − δg′ + ga = 0

The boundary conditions are slightly different despite the symmetry. On the upper boundary a+′(θ)
of the corresponding continuation region, the following value matching and smooth pasting conditions
apply:

g′
(
θ, a+′ (θ)

)
= θV ′

(
a+′ (θ)

)
+ f (θ)

g′θ
(
θ, a+′ (θ)

)
= V ′

(
a+′ (θ)

)
+ fθ (θ)

g′a
(
θ, a+ (θ)

)
= θV ′a

(
a+′ (θ)

)
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change in land value due to the variation of θ occuring during the same time unit where

the presence of a second derivative arises from the stochasticity of θ; and the third term

is the increase in the crop value due to timber growth per time unit.

The following proposition enunciates some additional properties of the upper and

lower boundaries.

Proposition 5 If species P is currently in place: For θ ∈ [0, θ∗], the upper boundary

a+ (θ) is such that a+ (0) = af and there exists θ
1, 0 < θ1 < θ

′
, such that a+ (θ) is

decreasing on
[
0, θ1

]
and increasing on

[
θ
′
, θ∗
]
. For θ ∈

[
θ∗, θ

]
, a+ (θ) is decreasing

while the lower boundary a− (θ) is increasing with a− (θ∗) = 0. The upper and lower

boundaries meet at (θ̄, a). Similarly, if species P ′ is currently in place: For θ ∈ [θ∗,+∞[,

the upper boundary a′+ (θ) is such that a+ (+∞) = a′f and there exists θ
′1, θ < θ′1 < +∞,

such that a′+ (θ) is increasing on [θ′1+∞[ and decreasing on
[
θ∗, θ

]
. On

[
θ
′
, θ∗
]
, a′+ (θ)

is increasing while the lower boundary a′− (θ) is decreasing with a′− (θ∗) = 0. The upper

and lower boundaries meet at (θ̄
′
, a′).

Proof. When θ tends to zero, the problem collapses to the single species case

analyzed above, for which the optimum harvest age is af given by (10) i.e. a+ (0) = af .

Equation (21a) implies that when θ is suffi ciently close to zero, δf (θ) ' Va (a+ (θ))−

δV (a+ (θ)) where the land value function increases in θ while Va (a)− δV (a) decreases

in a. It follows that a+ (θ) decreases in θ on some interval
[
0, θ1

]
with 0 < θ1 < θ∗.

Let us show that the upper boundary a+ (θ) is strictly decreasing on
[
θ∗, θ

]
. At (θ, a)

on a+ (θ), the investor is indifferent between harvesting now and earning the left hand

term of the following equation or waiting and harvesting later in which case she earns

the right hand of the same equation:

V (a) + max
s

[
e−δ

′sθV ′(s) + e−δsEf(θs)
]

= max
s

[
e−δsV (a+ s) + e−δsEf(θs)

]
. (22)

Let a small period of time da > 0 elapse, over which θ becomes θ + dθ. The right-hand

side (expected value of waiting) becomes
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max
s

[
e−δsV (a+ s) + e−δsEf(θs) + e−δsdaVa(a+ s) + e−δsEdf(θs)

]
; the left-hand side (har-

vesting now) becomes

V (a)+daVa (a)+max
s

[
e−δ

′sθV ′(s) + e−δsEf(θs) + e−δ
′sdθV ′(s) + e−δ

′sθdaV ′a(s) + (δ − δ′) dae−δ′sθV ′(s)
]

where the terms of order da are of a smaller order of magnitude than the terms in dθ.

Thus the effect of a small move away from the upper boundary a+ (θ) can be approxi-

mated while neglecting terms in da: equality (22) will be broken or maintained depending

on whetherV (a) + max
s

[
e−δ

′sθV ′(s) + e−δsEf(θs) + e−δ
′sdθV ′(s)

]
is higher than, lower

than, or equal to max
s

[
e−δsV (a+ s) + e−δsEf(θs) + e−δsEdf(θs)

]
. Using (22) and not-

ing that Edf(θs) = fθEdθs + 1
2
fθθEdθ

2
s is of an order of magnitude smaller of equal to

da, this reduces to evaluating the sign of e−δ
′sdθV ′(s): positive if dθ > 0 and vice versa.

This means that a small motion to the right from the boundary a+ (θ) causes the pair

(θ, a) to fall into the immediate harvest zone. In turn, this implies that the boundary is

downward sloping.

Let us show by the same method that the lower boundary a− (θ) is increasing on[
θ∗, θ

]
. At (θ, a) on a− (θ) with a < a, the investor is indifferent between harvesting

immediately thus earning the land value (the harvest is worth zero) given by the left-

hand term of the following equation, or harvesting later at age a+ s > a, in which case

she earns the right hand of the same equation:

max
s

[
e−δ

′sθV ′(s) + e−δsEf(θs)
]

= max
s

[
e−δsV (a+ s) + e−δsEf(θs)

]
. (23)

After a small time interval da, ignoring terms of order of magnitude smaller than or

equal to da, the difference between the left-hand and the right-hand side of (23) becomes

e−δ
′sdθV ′(s): positive if dθ > 0 and vice versa as above. This means that a small motion

to the right from the boundary a− (θ) causes the pair (θ, a) to fall into the immediate

harvest zone. Since the immediate harvest zone is below the frontier, this implies that

the lower boundary is upward sloping.

Note that at (θ∗, 0) the investor is indifferent between planting species P or switching

to species P ′; thus (θ∗, 0) belongs to a− (θ).

By symmetry, if species P ′ is in place then a′+ (θ) is strictly increasing while the lower
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boundary a′− (θ) is strictly decreasing on
[
θ
′
, θ∗
]
as depicted on Figure 3. Equation (21c)

linking a+ (θ) and a′+ (θ) on
[
θ
′
, θ
]
shows that as a+ (θ) is increasing then a′+ (θ) must

also be increasing on the same interval.

Let us show that a+
(
θ
)

= a−
(
θ
)

= a. Suppose as a proposition to be contradicted,

that a+
(
θ
)

= a + ε, ε > 0. Then V (a + ε) + f(θ̄) > V (a) + f(θ̄) ≥ V (a−
(
θ
)
) + f(θ̄)

where the left-hand side applies the definition (16) of the upper boundary while the right-

hand side results from the condition that a−
(
θ
)
≤ a. But then, for some pair

(
ε′, θ̄

′
)
,

0 < ε′ < ε; θ̄
′
> θ̄, it is also true that V (a + ε′) + f(θ̄

′
) > V (a−

(
θ
)
) + f(θ̄

′
) so that

θ̄ is not the maximum value of θ at which the continuation region exists, contradicting

its definition. This contradiction can be avoided only if ε = 0, implying that a+
(
θ
)

=

a. Now suppose as a proposition to be contradicted that a−
(
θ
)
< a; then by (18),

g
(
θ, a−

(
θ
))

> V
(
a−
(
θ
))

+ f(θ̄) = f(θ̄). Since g
(
θ, a
)
> g

(
θ, a−

(
θ
))
if a−

(
θ
)
< a,

there exists θ
′
> θ such that g

(
θ
′
, a
)
> g

(
θ
′
, a−

(
θ
))
so that θ̄ is not the maximum

value of θ at which the continuation region exists. This contradiction can be avoided

only if a−
(
θ
)
≥ a; since a−

(
θ
)
≤ a, it follows that a−

(
θ
)

= a. We conclude then that

the upper and lower boundaries meet at (θ̄, a).

To understand these results, recall that in Faustman’s model with a single species and

positive planting cost, rotations are shorter when planting cost decreases or the forest’s

value increases. Here, when θ increases from 0, the harvest age decreases and becomes

lower than Faustman optimum age (shorter rotation) because the alternative species is

an option (forest with higher value) while choosing is easy, meaning higher forest value

than single species, at low cost in terms of commiting an error in choosing the valuable

species. On the contrary, when θ is closer to θ∗, the switching cost becomes higher (it is

not easy to make a choice) and consequently rotations are increasingly longer.

4.1 Analytical resolution under certainty

We now assume that σ = σ′ = 0. Prices are certain, although not necessarily constant.

While this is a particular case of the stochastic version of the problem, it can be solved
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analytically entirely.

If µ = µ′ then the relative price θ remains constant. If a species is in place optimally

then it will continue to be planted and harvested successively forever. Switching from one

species to the alternative one can not occur unless the problem starts with an inherited

stand that should not have been planted in the first place.

When µ 6= µ′ switches are possible. Without loss of generality, assume that µ =

µ′ − µ > 0; the drift of the price of the currently planted species P is smaller than the

drift of the price of the alternative species P . Consider a stand of species P at age a

when its price is p and the price of the alternative species p′ is still relatively low. The

decision maker will cut this stand and replant the same species and so on until the price

of the alternative species P has suffi ciently increased with respect to the price of the

species currently planted. Suppose that species P is replanted n times until the switch

to P occurs. At that moment, species P will be cut for the last time and species P will

be planted thereafter forever. Therefore, by analogy with (11b), the land value at that

moment will be c′p′. It will be convenient to index cutting ages and the corresponding

prices in reverse chronological order. Thus a0 is the age at which species P is cut for

the last time. Cutting ages an, an−1,..,a0 will be chosen to maximize the stand value

G(p, p′, a) = pg(θ, a), that is

G(p, p′, a) = max
a0,...an

[
pnV (an)e−r(an−a) + ...

+p0V (a0)e
−r(an+...+a0−a) + c′p′0e

−r(an+...+a0−a)
]

where pi = peµ(an+...+ai−a) for i = 0, ...n and p′0 = p′eµ
′(an+...+a0−a). This implies that

G(p, p′, a) = p max
a0,...an

[
V (an)e−δ(an−a) + ...+ V (a0)e

−δ(an+...+a0−a)

+c′
p

p

′
e−δ

′(an+...+a0−a)
]

so that

g(θ, a) = max
a0,...an

[(
V (an)e−δan + ...+ V (a0)e

−δ(an+...+a0)
)
eδa (24)

+c′θe−δ
′(an+...+a0)eδ

′a
]
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For the purpose of next sections, consider the two decreasing and convex functions

K(a) = Va(a)
δ
− V (a) and L(a) = Va(a)

δeδa
crossing each other at Faustman’s age af as

illustrated in Figure 5.

Proposition 6 It exists θ0 > 0 such that the manager is indifferent between planting on

a bare land species P ′ forever or species P for one rotation of length a0 and then species

P ′ forever. Both θ0 and a0 are determined by

Va(a0)

V (a0)
= δ +

δ′

eδ
′a0 − 1

(25a)

K(a0) =
δ′

δ
c′θ0e

µa0 (25b)

Besides, a0 satisfies a < a0 < af .

Proof. The existence of θ0 and a0 stems from Proposition 5. As by definition the

manager is indifferent between planting P ′ forever or planting P for just one rotation of

length a0 then c
′θ0 = maxs

[
V (s)e−δs + c′θ0e

−δ′s] where a0 = arg maxs
[
V (s)e−δs + c′θ0e

−δ′s].
The first order condition of this maximization problem is equivalent to equation (25b).

The second order condition is Ka(a0) − µK(a0) < 0, satisfied for a0 ∈]a, aw[ as V (a)

is decreasing and concave on this interval and µ > 0. The first order condition, to-

gether with c′θ0 = V (a0)e
−δa0 +c′θ0e

−δ′a0 , gives Equation (25a) that allows to determine

a0 unambiguously whereas (25b) determines θ0. As
Va(a)
V (a)

is decreasing on [a,+∞[ and

lima→a
Va(a)
V (a)

= +∞ then a0 > a. Faustman’s age af is determined by Equation (11d)

that is equivalent to Va(af )

V (af )
= δ+ δ

e
δaf−1

. One can prove that δ
eδa−1 <

δ′

eδ′a−1 for any a > 0

as δ′ < δ. Consequently, Va(af )
V (af )

<
Va(a0)

V (a0)
, thus a < a0 < af .

When θ > θ0, it is conceivable that a stand of age a of species P may be inherited by

the decision maker while not resulting from a rational decision to establish it. Depending

on the stand age and on the value of θ, the decision maker may be better off harvesting

immediately and planting the alternative species, or letting the stand reach maturity

before switching.
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Proposition 7 For θ ≥ θ0, the upper switching boundary a+(θ) is defined analytically

as {
(θ, a)/ θ0 ≤ θ ≤ θ̄, a ≤ a ≤ a, and K(a) = c′

δ′

δ
θ

}
(26)

where θ̄ and a are respectively the unique solutions to Va(a) = δ′c′θ̄eµa and K(a) = c′ δ
′

δ
θ0.

It is a decreasing curve in the plan (θ, a) stretching between (θ0, a) and (θ̄, a).

Proof. Consider an inherited stand P characterized by (θ, a) such that with θ ≥ θ0

and a ≥ a. The maximization problem is

max
s

[
V (s)e−δs + c′θe−δ

′s
]

whose first order condition is equivalent to K(a) = c′ δ
′

δ
θ whereas the second order

condition is Ka(a)−µK(a) < 0, satisfied for a ∈]a, a[ as V (a) is decreasing and concave

on this interval and µ > 0. The first order condition defines a decreasing curve a(θ).

The proof of monotonicity is immediate since K(a) = Va(a)
δ
− V (a) is decreasing in a.

The highest value of θ compatible with a ≥ a defines θ̄ with K(a) = Va(a)
δ

= δ′

δ
c′θ̄eµa

or Va(a) = δ′c′θ̄eµa. The highest value of a is a compatible with θ0 with a < aw as

K(a) = c′ δ
′

δ
θ0 > K(aw) = 0.

Proposition 8 For θ ∈ [θ0, θ̄], the lower switching boundary of the waiting region a−(θ)

is defined analytically as

{
(θ, a)/ θ0 ≤ θ ≤ θ̄, 0 ≤ a ≤ a,∃s ≥ 0/ (27)(

1− e−δ′s
)
c′θ = e−δsV (a+ s) and K(a+ s) =

δ′

δ
c′θeµs

}
It is an increasing curve in the plan (θ, a) stretching between (θ0, 0) and (θ̄, a).

Proof. For a ∈ [0, a], the set of points (θ, a) for which the decision maker is indif-

ferent between harvesting immediately to earn p [c′θ + V (a)] or harvesting after a time

period s maximizing e−rs[psV (a+ s) + c′p′s] defines the lower switching boundary of the

waiting region. It is defined as the set of points (θ, a) solution to c′θ+V (a) = e−δsV (a+

s)+e−δ
′sc′θ andK(a+s) = δ′

δ
c′θeµs where V (a) = 0, a−a ≤ s ≤ a0−a, and a+s ∈ [a, a0]
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is the age at which the trees will be cut and a is their age on the lower boundary. Pairs

(θ, a) below or to the right of the lower boundary command immediate cutting; while

pairs above the lower boundary but below the upper boundary belong to the continua-

tion region. The two equations in Proposition 8 lead to Va(a+s)
V (a+s)

= δ+ δ′

eδ′s−1 . For a given

a ∈ [0, a], Va(a+s)
V (a+s)

decreases in s ∈ [a − a, a0 − a] from +∞ to Va(a0)

V (a0)
whereas δ + δ′

eδ′s−1

decreases from a finite positive value δ+ δ′

eδ
′(a−a)−1 to δ+ δ′

eδ
′(a0−a)−1

> δ+ δ′

eδ
′a0−1 =

Va(a0)

V (a0)

by (25a). Therefore, for any a ∈ [0, a], there exists a unique s ∈ [a− a, a0− a] such that
Va(a+s)
V (a+s)

= δ + δ′

eδ′s−1 that we denote s(a). Furthermore, as Va(a+s)
V (a+s)

decreases in a, then

s(a) decreases in a, too. The second equation K(a + s) = δ′

δ
c′θeµs shows that for any

a ∈ [0, a], there exists a unique θ = θ(a) satisfying the condition in Proposition 8. To

show that θa(a) < 0, derive
(
1− e−δ′s

)
c′θ = e−δsV (a + s) with respect to a to obtain(

1− e−δ′s
)
c′θa = −δe−δsV (a+ s)sa + e−δs(1 + sa)Va(a+ s)− δ′e−δ′sc′θsa or(

1− e−δ′s
)
c′θa = −δe−δsV (a+s)sa+e

−δs(1+sa)Va(a+s)−δe−δssa
(
Va(a+s)

δ
− V (a+ s)

)
that is(

1− e−δ′s
)
c′θa = e−δssaVa(a+ s). As sa(a) < 0 then θa(a) < 0.

The point (θ0, 0) satisfies the condition in Proposition 8 with s = a0 and a = 0. The

point (θ̄, a) satisfies this condition with s = 0 and a = a. The lower switching boundary

a−(θ) is then an increasing curve in the plan (θ, a) stretching between (θ0, 0) and (θ̄, a).

An implication of the two last propositions is that there does not exist any continua-

tion zone for values of θ above θ. If a stand P exists for such values, it must be harvested

immediately and the alternative tree species must be established.

Proposition 9 Assume that µ < µ′ and the land is occupied by the stand P character-

ized by the pair (θ, a) with θ < θ0. If the manager has not to harvest the stand immedi-

ately then she must optimally harvest it and replant the land with the same species P at

pairs (θeµ(an+...+ak−a), ak), k = 1, ..., n, and finally harvest for the last time the stand P

at pair (θeµ(an+...+a0−a), a0) and immediately switch once and forever to species P ′. The
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cutting ages (an, ..., a1,a0) can be determined by the following n+ 1 equations.

K(ak) = L(ak−1), for k = 1, ..., n (28a)

K(a0) =
δ′

δ
c′θeµ(an+...+a0−a) (28b)

where the number of rotations n+1 is determined endogenously to satisfy θeµ(an+...+a0−a) ≥

θ0 and θeµ(an+...+a1−a) ≤ θ0.

Proof. Note that the solution (an, ..., a0) to the maximization problem correspond-

ing to g(θ, a) is the same as the one corresponding to g(θ0, 0) where θ0e(µ
′−µ)a = θ.

As so, it is possible to set a to zero in the maximization problem. Consider then the

maximization problem g(θ, 0) = maxa0,...anW (θ, an, ..., a0) whereW (θ, an, ..., a0) denotes

V (an)e−δan + ... + V (a0)e
−δ(an+...+a0) + c′θe−δ

′(an+...+a0). The n + 1 first order condi-

tions of this maximization problem are Va(ak)e−δ(ak+...+an)− δ
∑k

i=0 V (ai)e
−δ(ai+...+an)−

δ′c′θe−µae−δ
′(a0+...+an) = 0 for k = 0, ..., n. This set of n+1 equations can be equivalently

simplified into another set of n+1 equations obtained by keeping the 1st order condition

for k = 0, and for k = 1, ..., n, substituting the kth first order condition for the equation

obtained by subtracting the (k− 1)th first order condition from the kth one. This trans-

formation of the n + 1 first order conditions of the maximization problem leads to the

following equivalent set of n + 1 equations Va(a0) − δV (a0) − δ′c′θeµ(a0+...+an−a) = 0 or

K(a0) = δ′

δ
c′θ0, and Va(ak)e−δ(ak+...+an) − δV (ak)e

−δ(ak+...+an) = Va(ak−1)e
−δ(ak−1+...+an)

or K(ak) = L(ak−1) for k = 1, ..., n. We show in the appendix that the second order

condition is satisfied.

Conditions (28a) apply at harvests where it is optimal to replant the same species;

they can be called replanting conditions. The last condition (28b) applies when switching

to the alternative species is optimal, upon the last harvest of species P . A consequence of

Proposition 9 is the existence of a strictly decreasing sequence (θk)k∈N with first term θ0

and limn→+∞ θn = 0 such that if the land is bare and relative timber price is θ ∈ [θn+1, θn]

than it is optimal to plant it with species P exactly n times before switching definitely to

species P ′. As illustrated in Figure 6, when θ varies in the interval [θn+1, θn], let [an, an]

denote the interval of the corresponding cutting age.
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For the purpose of next propositions, let R(a) denotes the unique positive number in

]a,+∞[ associated to a ∈]a,+∞[ such that K(R(a)) = L(a). As illustrated in Figure 5,

on the interval ]a,+∞[, the function R has the following proprieties

∀a ∈ ]a,+∞[, R(a) = a⇐⇒ a = af

∀a ∈ ]a,+∞[, R(a) < a⇐⇒ a > af

∀a ∈ ]a,+∞[, R(a) > a⇐⇒ a < af

Proposition 10 The boundary a(θ) of the continuation region for θ ≤ θ0 is the union of

infinity of decreasing and discontinuous curves an(θ) stretching between (θn+1e
µ an , an)

and (θne
µ an , an) with an+1 < an, af ∈ [an+1, an+1] ⊂ [an, an], for n = 0, ...,+∞. Pre-

cisely, sequences (an)n∈N and (an)n∈N are respectively increasing and decreasing with

limn→+∞ an = limn→+∞ an = af .

Proof. Assume that µ < µ′. When the relative timber price θ varies in [θ1, θ0], by

definition of θ0 and θ1, it is optimal to plant a bare land with species P and cut the stand

at age a(θ) such that K(a(θ)) = δ′

δ
c′θeµa(θ) where θeµa(θ) > θ0 and switch immediately to

species P ′. Recall that, by Proposition 7, a+(θ) is a decreasing curve in the plan (θ, a)

stretching between (θ0, a) and (θ, a). By definition of θ1, when the relative timber price

is equal to θ1, the manager is indifferent between planting species P and harvest later

on at age a0 and switching to species P ′, or harvesting and replanting the same species

for the last time at age a1. Note that a0 ≥ a1, by definition of a0, a1, and θ0. Assume

that a0 = a1, that is the harvest will take place at some time in the future at which

the manager is indifferent between species P or P ′ to be planted. Then, necessarily

a0 = a1 = a, θ0 = θ1, and K(a) = L(a0) and K(a) = δ′

δ
c′θ0 by Proposition 9. As

K(a0) = δ′

δ
c′θ0e

µa0 then, L(a0) = K(a0)e
µa0 implying Va(a0)

V (a0)
= δ+ δ

eδ
′a0−1 that contradicts

equation (25a) as long as δ 6= δ′. We conclude that a0 > a1.

Consider now the cutting boundary a1(θ) corresponding to a stand that has been

planted with species P at date 0 when timber relative price was θ ∈ [θ1, θ0]. Consider

two pairs (xeµa(x), a(x)) and (yeµa(y), a(y)) of this curve such that x < y. There exist
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only two pairs (x′eµa(x
′), a(x′)) and (y′eµa(y

′), a(y′)) on the upper switching curve a+(θ)

such that R(a(x)) = a(x′), R(a(y)) = a(y′), x′ < y′, and a(x′) > a(y′) as it is decreasing

in the plan (θ, a), as depicted in Figure 5. One can show that the function R conserves

the order relationship and therefore necessarily a(x′) < a(y′). We conclude that a1(θ)

is a decreasing curve in the plan (θ, a). The proof can be recursively repeated to show

that all curves an(θ), n = 2, ...+∞, are decreasing in the plan (θ, a).

For n = 0, ...,+∞, by definition of an+1(θ), for any pair (x, a(x)) ∈ an+1(θ), there

exists a unique pair (x′, a(x′)) ∈ an(θ) such that R(a(x)) = a(x′). Given the proprieties

of the function R, this implies that [an+1, an+1] ⊂ [an, an]

and limn→+∞ an = limn→+∞ an = af .

Proposition 11 When µ < µ′, the reduced land value function f(θ) and the corre-

sponding cutting age can be computed recursively using

f(θ) = max
θ′≥θ

(
θ′

θ

)− δ
δ−δ′

[
V (

log( θ
′

θ
)

µ′ − µ ) + f(θ′)

]
(29)

for θ ≤ θ0 and using f(θ) = b′θ for θ ≥ θ0.

Proof. When the current prices are given by p and θ ≤ θ0, it is optimal to plant

species P and the land value function is defined as pf(θ) = maxs>0 e
−rs [psV (s) + psf(θs)].

Under certainty, ps = peµs and θs = θe(µ
′−µ)s = θe(δ−δ

′)s. Consequently, f(θ) =

maxs>0 e
−δs [V (s) + f(θs)] where s is replaced by 1

µ′−µ log( θs
θ

), to obtain the expression

of f(θ) in Proposition 11.

Note that the cutting age as a function of θ is a discontinuous curve. The discon-

tinuous part corresponds to θ ≤ θ0, that is the replanting part of the cutting age. The

discontinuity is present to distinguish between a stand that has to be replanted for n

times with species P before switching definitely to species P and another who has to be

replanted exactly n− 1 times before switching to species P .

Proposition 11 is used to compute the land value function under certainty. At relative

prices equal to or higher than the switching threshold θ0, land value equals c′θ, the land
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value function that applies when the sole species is P .

4.2 Numerical resolution with uncertainty

In order to conclude the description of the solution of the model with uncertainty, in

particular in order to describe the boundary of the continuation region, it is necessary

to use numerical methods. The reduced forest value function g(θ, a) must satisfy the

partial differential equation (19) and the value-matching and smooth pasting conditions

(Equations (20a), (20b), and (20c)). The partial differential equation governing g(θ, a)

can be simplified by performing the change of variable x = log(θ). Let h(x, a) = g(θ, a)

and l(x) = f(θ), then the partial differential equation governing h(x, a) is

σ2

2
hxx +

(
µ− σ2

2

)
hx − δh+ ha = 0 (30)

The optimal stopping problem of valuing the forest value when species P is planted is

similar to the problem of valuing an American-type option with free boundary. Because

the free boundary location is not known in advance, the value-matching and smooth

pasting conditions cannot be of immediate help. These conditions can be used to localize

the free cutting boundary once the stand value is determined. We do so iteratively as

explained later in this section. To compute the forest value function h(x, a), it is helpful

to specify the corresponding optimal stopping problem as a linear complementarity one

(Zvan et al, 1998). Let L be the linear operator defined as

L.h =
σ2

2
hxx +

(
µ− σ2

2

)
hx − δh+ ha

Then, the linear complementarity problem is

L.h(x, a) ≥ 0

h(x, a)− (l(x) + V (a)) ≥ 0

L.h(x, a) [h(x, a)− (l(x) + V (a))] = 0

Note that this formulation does not imply any explicit use of the free cutting bound-

ary a(θ). It shows that the value function h(x, a) can be considered as the value of an
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American option with expiry date equals to infinity, an underlying asset which is a geo-

metric diffusion process with drift µ and volatility σ2, and a discount factor equal to δ.

Indeed, in the continuation region where it is optimal to continue holding the option to

harvest, the required return δh is equal to the actual return or equivalently L.h(x, a) = 0

and the option value is higher than the payoff, that is h(x, a)− (l(x) + V (a)) > 0. Con-

sequently, it is not yet optimal to exercise. In the stopping region, it is no more optimal

to continue holding the option to harvest but it is optimal to harvest immediately be-

cause the required return δh is less than the actual return or equivalently L.h(x, a) > 0

and the option value must equal the payoff that is h(x, a) − (l(x) + V (a)) = 0. The

free cutting boundary is just where the decision maker is indifferent between harvest-

ing immediately or continuing to hold this option, that is when L.h(x, a) = 0 and

h(x, a)− (l(x) + V (a)) = 0.

When valuing an American option, the use of the complementarity formulation is

straightforward. The option value is then computed numerically by performing a dis-

cretization of the linear complementarity problem. The main difference between valuing

an American option and the forest value is that the payoff in the former case is known

as a function of the underlying asset when exercising the option whereas it should be

endogenously determined in the latter as it is the sum of the timber crop value and

the land value l(x) = h(x, 0). For this reason, valuing the forest value function h(x, a)

as a complementarity problem as specified above is seemingly not possible. Instead,

we need to consider simultaneously the second problem consisting in valuing the forest

value function g′(θ, a) = h′(x, a) as follows:

L.h(x, a) ≥ 0 (31a)

h(x, a)− (l(x) + V (a)) ≥ 0 (31b)

L.h(x, a) [h(x, a)− (l(x) + V (a))] = 0 (31c)
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L.h′(x, a) ≥ 0 (32a)

h′(x, a)− (l(x) + exV (a)) ≥ 0 (32b)

L.h′(x, a) [h′(x, a)− (l(x) + exV (a))] = 0 (32c)

l(x) = h(x, 0) = h′(x, 0) (33)

Equations (31a)−(32c) represent the complementarity problem respectively for stand

P and stand P whereas equation (33) says that each forest value at age zero must equal

the land value by Proposition 4. As specified by equations (31a)− (32c), and equation

(33), the problem of valuing simultaneously both stands can then be solved numerically.

The value-matching and smooth-pasting conditions will be used to localize the age cut-

ting boundary. The forest value functions h(x, a) and h′(x, a) are computed iteratively

as specified by the following pseudo-code. First, (i) assume that after the n − 1th it-

eration, the land value function is l(n); then (ii) compute forest value function h(n) as

solution to (31a)− (31c) and forest value function h′(n) as solution to (32a)− (32c); (iii)

deduce the new land value function as l(n+1)(x) = max(h(n)(x, 0), h′(n)(x, 0)); (iv) con-

tinue iteratively until convergence is reached when h(x, 0) and h′(x, 0) are approximately

equal.

The initial value ascribed to the land value can be arbitrarily chosen. We find that the

algorithm converges when the land value has initially any positive values. However, the

convergence is generally faster when the initial land value function is equal tomax (c, c′θ)

or max (c, c′ex). Indeed, this is the minimal land value when both tree species P and P

are available.

The numerical discretization to compute h(n) and h′(n) at step (ii) is based on a fully

implicit finite difference method. With respect to a fully explicit finite difference method,

the implicit method is unconditionally stable and more robust (Brennan and Schwartz

1978). Other numerical methods to solve option valuation problems are discussed in
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Wilmott et al (1993). We use the penalty method (Zvan et al, 1998) to solve the linear

complementarity problem as in Insley (2002).

Figures 1 and 2 illustrate the cutting age boundary with respectively low and high

uncertainty in the case where µ < µ′. The relative price threshold θ∗ for which the

decision maker is indifferent between planting any of the two species on a bare land (the

switching threshold) corresponds to the relative price for which it is optimal to cut the

currently planted species at age zero. It is the same relative price at which the replanting

cutting boundary meets the switching one.

Figure 4 shows the land value function in the case where µ < µ′. The land has a

greater value under uncertainty than under certainty and it is more valuable when the

uncertainty level, measured by σ2, increases. Unlike the case under certainty, the land

value function has a continuous slope around the relative price switching threshold under

uncertainty to prevent any arbitrage. When the relative price tends respectively to zero

or to infinity, that is when respectively species P or P is worthless, the reduced land

value functions tend toward their single species level c or c′θ respectively.

5. Conclusion

We have examined the decision to undertake projects that differ in that they gener-

ate different future income flows. The focus has been extensions of the conventional

forestry economics model. In our extended forestry model, two alternative species may

be planted, so that outputs as well as timber prices differ across species. This entails

more sophisticated planting and harvesting decisions than had been considered before.

When choosing between two alternative species for just one rotation, the decision

maker plants immediately if the price of one species is suffi ciently high compared to the

price of the other species. However, the decision maker prefers to wait if both prices

are suffi ciently close. This is so even while the decision does not involve any direct cost.

Indeed, even in the absence of explicit investment costs, there is the potential cost of

establishing the wrong species. This mistake is irreversible because the project involves
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Figure 1: Boundary of the continuation region under low uncertainty
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Figure 2: Boundary of the continuation region under high uncertainty
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Figure 3: Boundary of the continuation region when species P or the alternative one,
P ′, is planted
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Figure 4: Land value as function of the relative price
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one harvest only. Consequently, the decision maker prefers waiting until the prices of

the alternative species are suffi ciently far away from each other to make the probability

of a price reversal acceptably low.

We then considered situations where the decision maker has the opportunity to ex-

ploit the forest land for an indefinite number of rotations. Here the decision maker must

decide at what age the current stand should be harvested and whether the same species,

or the alternative species, should be replanted, immediately or after some delay.

We showed that, absent any planting costs, the investor immediately establishes the

species whose relative price exceeds some threshold; otherwise the alternative species is

selected. This rule differs from the one rotation case because introducing many rotations

has the effect of diluting the irreversibility effect present in the one rotation case. The

decision maker plants immediately because it is possible to switch to the alternative

species whenever desirable. This is not an easy decision, however, as trees may in that

case have to be harvested while they have little or no value. We have shown that,

although waiting without planting may help choose the best species, nothing can be

gained and some loss may be made, by using that strategy.

We have characterized the value functions and the optimal management strategy in

this stochastic repeated rotations context, although they were not provided in explicit

form. In the space of relative species prices and wood stand ages, we characterized the

set of points where the manager is willing to wait or to exercise the option of harvesting.

The exercise frontier divides itself into a zone where the same species is reestablished

immediately, and, at higher relative prices a zone where the other species is chosen. The

relative price that separates these two zones is independent of stand age. At still higher

relative prices, the continuation zone and exercise frontier disappear altogether: a stand

of the "wrong" species should then be harvested immediately.

Land value is higher than when one species only is available. It converges to the

limiting cases of one species, or the other, when their relative price tends to zero or to

infinity. When both species are available, the optimum cutting age is non monotonous

but oscillates around Faustman’s’age when the relative price is below some threshold
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value signalling the necessity to switch to the alternative species. This is because the

decision maker would rather wait than plant the wrong species and adjust the number

of times the same species has to be planted. The land value increases with the uncer-

tainty related to timber prices. It is an increasing function of the relative price with a

continuous slope even around the switching threshold to prevent any arbitrage as long as

the uncertainty is present. On the contrary, under certainty, the slope of the land value

function generally changes at the switching threshold. For relative prices higher than

the switching threshold, the optimal harvesting age decreases until it hits the minimum

age at which timber volumes become positive. Similar results are established explicitly

in the certainty case.
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6. APPENDIX

Figure 5: Functions K(a) and L(a).
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Figure 6: Boundary of the continuation region under certainty
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Proof of Proposition 1

Consider a decision maker who chooses the proportion λ of a bare piece of land to be
devoted to either one of the species while simultaneously choosing the planting date. The rest
of the land 1−λ is devoted to the other species and planted simultaneously or later. Harvests
take place at dates to be chosen optimally for each species. Assuming without loss of generality
that species P is planted at T and species P is established at T ′, the value of the project is
then

F (p, p′) = E max
T,T ′,λ∈[0,1]

(
λe−rT max

s
ET e

−rsV (s)pT+s (34)

+ (1− λ) e−rT
′
max
s′

ET ′e
−rs′V ′(s′)p′T+s′

)
where E is the expected value operator conditional on current information, and ET (respec-
tively ET ′) is the expected value operator conditional on information at T (respectively T ′).
Since λ and 1−λ do not affect the choices of s or s′ in problem (34), and since they enter the
objective function multiplicatively, they do not affect the choices of T or T ′. Consequently λ
can be determined given the optimal rules for choosing T and T ′:

F (p, p′) = E

{
max
λ∈[0,1]

[
λmax

T
E
(
e−rT max

s
ET e

−rsV (s)pT+s

)
+ (1− λ) max

T ′
E
(
e−rT

′
max
s′

ET ′e
−rs′V ′(s′)p′T+s′

)]}
The above problem is linear in λ. Consequently the solution is either λ = 1 or λ = 0. This
establishes that diversification is not optimum.

Proof of Proposition 1

The only elements not established in the text are the price thresholds and the con-
stants in Formula (7). For a current price level p, suffi ciently high relative to p′, that
is for θ smaller than a critical threshold θ∗, it is optimal to invest immediately in P ;
then, by (5), F (p, p′) = bp or f(θ) = b. On the boundary θ = θ∗, the value-matching
and smooth-pasting conditions (Dixit 1993) imply f(θ∗) = b and fθ(θ

∗) = 0. Similarly,
at levels p′ suffi ciently high relatively to p, that is for θ bigger than a critical threshold
θ′∗, it is optimal to invest immediately in P ; then F (p, p′) = b′p′ or f(θ) = b′θ, and
the value-matching and smooth-pasting conditions are respectively f(θ′∗) = b′θ′∗ and
fθ(θ

′∗) = b′. Equations f(θ∗) = b, fθ(θ
′∗) = 0, f(θ′∗) = b′θ′∗, and fθ(θ

′∗) = b′, combined
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with (7), determine b1, b2, θ
∗ and θ′∗:

b1 ≡
1− β2
β1 − β2

(
[β1/(β1 − 1)]β1

[β2/(β2 − 1)]β2

)(1−β1)/(β1−β2)
(35a)

b2 ≡
β1 − 1

β1 − β2

(
[β1/(β1 − 1)]β1

[β2/(β2 − 1)]β2

)(1−β2)/(β1−β2)
(35b)

θ∗ ≡
(

[β1/(β1 − 1)]β1−1

[β2/(β2 − 1)]β2−1

)1/(β1−β2)
(35c)

θ′∗ ≡
(

[β1/(β1 − 1)]β1

[β2/(β2 − 1)]β2

)1/(β1−β2)
(35d)

Proof of Lemma 1

F (p) may be written as F (p) = max
{ak}

E
∑∞

k=1 e
−rτkpτkV (ak) where current time is t = 0

and τ k =
∑k

s=1 as is the sum of all cutting ages from the next harvest to the kth harvest.
Since p is a GBM, multiplying p by λ implies that ps is multiplied by λ for any s > t. Then
F (λp) = max

{ak}
E
∑∞

k=1 e
−rτk(λpτk)V (ak)

=λmax
{ak}

E
∑∞

k=1 e
−rτkpτkV (ak) = λF (p)

Consequently, (9) can be written as
pF (1) = max

s
Ee−rs [psV (s) + psF (1)] or pF (1) = max

s

[
pe−δsV (s) + pe−µsF (1)

]
= pmax

s

[
e−δsV (s) + e−µsF (1)

]
. Thus the maximization which defines the optimal har-

vest age is independent of the price.

Proof of Lemma 2

First, we will prove that F (p, p′) is homogenous of degree one in (p, p′). Define αk as a
dichotomous variable taking the value 1 if species P is planted after the (k − 1)th harvest or
the value 0 otherwise. Similarly, α′k is a dichotomous variable taking the value 1 if species P
is planted after the (k − 1)th harvest or 0 if species P is planted at that time. Thus, αk and
α′k satisfy αk ∈ {0, 1}, α′k ∈ {0, 1}, and αkα′k = 0. F (p, p′) can be written as F (p, p′) =

max
{αk,α′k,ak}

E
∑∞

k=1 e
−rτk

(
αkpτkV (ak) + α′kp

′
τk
V ′ (ak)

)
. Since p is a GBM, multiplying pt by

λ implies that pt′ is multiplied by λ for any t′ > t. Then F (p, p′) is homogenous of degree one
in (p, p′). Considering equations (12a) and (12b), the functions G(p, p′, a) and G′(p, p′, a) are
homogenous of degree one in (p, p′) as well. Now, suppose that species P is currently planted;
we want to prove that the optimal cutting age depends on θs only, where θs is the value of
θ when the stand is optimally cut. As G(p, p′, a) = maxs>0Ee

−rs [psV (s+ a) + F (ps, p
′
s)],
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then G(1, θ, a) = maxs>0

[
e−δsV (s+ a) + Ee−rs ps

p
F (1, θs)

]
. Note that ps

p
is the value at

time s of a GBM with drift µ and volatility σ whose value is 1 at time 0; thus ps
p
is independent

of p (as ps
p
is a GBM with initial value 1). Since it is optimal to cut when

argmaxsEe
−rs [psV (s+ a) + F (ps, p

′
s)] = 0, the optimal cutting age depends on θ only.

Let G(p, a) = pg(a) where g(a) is a function of the stand age to be determined. Except at
harvest age, G(p, a) satisfies Bellman’s equation E (dG(p, a)) = rG(p, a)da where EdG =

Gada+Gpµpda+ σ2

2
p2Gppda+o(da), Ga = pga(a), Gp = g(a), and Gpp = 0. Consequently

EdG = pga(a) + µg(a)pda + o(da), and Bellman’s equation implies that g(a) must satisfy
δg(a) = ga(a) for a ∈ [0, af ], where δ ≡ r − µ and af is the optimal harvest age, the same
for all harvests by Lemma 1. At any harvest, G(p, a) should satisfy the value-matching and
smooth-pasting conditions linking G(p, af ) and V (af )p+ F (p). Dividing both conditions by
p yields g(af ) = V (af ) + f(θ) and ga(af ) = Va(af ).

Solving in the usual fashion, one finds that the forest and land value functions, together
with c, a constant, and the optimal harvest age are determined by the equations in the Lemma.

As g(θ, a) = 1
p
G(p, p′, a) = 1

p
max
s

Ee−rs [psV (s+ a) + F (ps, p
′
s)] or g(θ, a) = max

s
Ee−rs

[
ps
p
V (s+ a) + ps

p
f(θs)

]
that is g(θ, a) = max

s

[
e−rs Eps

p
V (s+ a) + e−rsE ps

p
f(θs)

]
. While p and θ are possibly cor-

related, ps
p
is a GBM whose initial value is unity (since by notational definition, p0 is noted

p). Hence ps
p
is independent of θ; as a result it can be replaced by its expected value in

E
(
ps
p
f(θs)

)
, giving (14a). A similar proof gives (14b) and (14c).

Proof Equation (19)

G(p, p′, a) = pg(θ, a) must satisfy Bellman’s equation EdG(p, p′, a) = rG(p, p′, a)da.
As dG = Gada + Gpdp + 1

2
Gppdp

2 + Gp′dp
′ + 1

2
Gp′p′dp

′2 + Gp′pdpdp
′ + o(da) where

Ga(p, p
′, a) = pga(θ, a),

Gp(p, p
′, a) = g(θ, a)− θgθ(θ, a),

Gpp(p, p
′, a) = θ2

p
gθθ(θ, a),

Gp′(p, p
′, a) = gθ(θ, a),

Gp′p′(a, p, p
′) = 1

p
gθθ(θ, a), and

Gpp′(p, p
′, a) = − θ

p
gθθ(θ, a).

Then EdG(p, p′, a)

= pgada+ µpgda+ pθgθ (µ′ − µ) da+ θ2gθθ

(
σ2

2
− ρσσ′ + σ′2

2

)
da+ o(da)

and so σ2

2
θ2gθθ + µθgθ − δg + ga = 0 where σ2 = σ2 − 2ρσσ′ + σ′2 and µ = µ′ − µ.

Note that θ is a GBM with drift µ′ − µ+ σ2 − ρσσ′ and volatility σ2.

Proof of the Second Order Condition

We will show that the Hessian matrix
[
∂2W
∂ai∂aj

]
1≤i,j≤n+1

associated to W (θ, an, ..., a0)

twice continuously differentiable with respect to (an, ..., a0) is negative definite on ]a,+∞[n+1,
where

g(θ, 0) = max
an,...,a0

W (θ, an, ..., a0)
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To do so, we will show that its leading principal minors of order k has the sign of (−1)k

for k = 1, ..., n+ 1. First determine Wkk = ∂2W
∂ak∂ak

for 1 ≤ k ≤ n+ 1, and Wkl = ∂2W
∂al∂ak

for
l such that k < l ≤ n+ 1 as the Hessian matrix is symmetric:

Wkl= −δV a(ak)e
−δ(ak+...+an)+δ2

∑k
i=0 V (ai)e

−δ(ai+...+an)+δ′2c′θe−δ
′(a0+...+an)

Wkk= V aa(ak)e
−δ(ak+...+an)−δV a(ak)e

−δ(ak+...+an)−δV a(ak)e
−δ(ak+...+an)

+δ2
∑k

i=0 V (ai)e
−δ(ai+...+an) + δ′2c′θe−δ

′(a0+...+an). Using the first order conditions, we
show that Wkl is independent of k and l, and that Wkl < 0: Wkl = −δVa(ak)e−δ(ak+...+an) +

δ2
∑k

i=0 V (ai)e
−δ(ai+...+an)

+δ′
[
Va(ak)e

−δ(ak+...+an) − δ
∑k

i=0 V (ai)e
−δ(ai+...+an)

]
Wkl=µVa(ak)e

−δ(ak+...+an)−δµ
∑k

i=0 V (ai)e
−δ(ai+...+an)

Wkl= δµK(ak)e
−δ(ak+...+an)−δµ

∑k−1
i=0 V (ai)e

−δ(ai+...+an)

Wkl= δµL(ak−1)e
−δ(ak+...+an)−δµ

∑k−1
i=0 V (ai)e

−δ(ai+...+an)

Wkl=µVa(ak−1)e
−δ(ak−1+...+an)−δµ

∑k−1
i=0 V (ai)e

−δ(ai+...+an)

Wkl= δµK(ak−1)e
−δ(ak−1+...+an)−δµ

∑k−2
i=0 V (ai)e

−δ(ai+...+an)

We continue so and show that,
Wkl= δµK(a2)e

−δ(a2+...+an)−δµ
[
V (a0)e

−δ(a0+...+an) + V (a1)e
−δ(a1+...+an)

]
Wkl= δµL(a1)e

−δ(a2+...+an)−δµ
[
V (a0)e

−δ(a0+...+an) + V (a1)e
−δ(a1+...+an)

]
Wkl=µVa(a1)e

−δ(a1+...+an)−δµ
[
V (a0)e

−δ(a0+...+an) + V (a1)e
−δ(a1+...+an)

]
Wkl= δµK(a1)e

−δ(a1+...+an)−δµV (a0)e
−δ(a0+...+an)

Wkl= (δ′ − δ)Va(a0)e
−δ(a0+...+an)−δµV (a0)e

−δ(a0+...+an)

Wkl= δµe−δ(a0+...+an)
[
Va(a0)
δ
− V (a0)

]
Wkl = δµe−δ(a0+...+an)K(a0) < 0 as µ = δ′ − δ < 0 and K(a0) > 0.
Denote Wkl = β < 0 and αk = δe−δ(ak+...+an)Ka(ak) < 0 then Wkk = αk + β. The kth

leading principal minor for

k = 1, ..., n + 1, is therefore

∣∣∣∣∣∣∣∣∣∣∣∣

α1 + β β ... β β
β α2 + β ... . .
. . ... . .
. . ... β .
. . ... αk + β β
β β ... β αk + β

∣∣∣∣∣∣∣∣∣∣∣∣
that is denoted

H(α1, ..., αk, β). By subtracting the second line from the first one and then develop the
determinant according the first line, we obtain

H(α1, ..., αk, β) =

∣∣∣∣∣∣∣∣∣∣∣∣

α1 −α2 ... 0 0
β α2 + β ... β β
. β ... . .
. . ... β .
. . ... αk−1 + β β
β β ... β αk + β

∣∣∣∣∣∣∣∣∣∣∣∣
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= α1H(α2, ..., αk, β) + α2

∣∣∣∣∣∣∣∣∣∣
β β ... . β
β α3 + β ... . .
. β ... . .
. . ... αk−1 + β β
β β ... β αk + β

∣∣∣∣∣∣∣∣∣∣
By subtracting the last line from the first one to compute the last determinant and continue

to do so, we obtain

= α1H(α2, ..., αk, β) + α2

∣∣∣∣∣∣∣∣∣∣
0 −α3 0 0 0
β α3 + β ... β β
β β ... . .
. . ... αk−1 + β β
β . ... β αk + β

∣∣∣∣∣∣∣∣∣∣
= α1H(α2, ..., αk, β) + α2α3

∣∣∣∣∣∣∣∣
β β ... β
. α3 + β ... .
. . ... .
β β ... αk + β

∣∣∣∣∣∣∣∣
= α1H(α2, ..., αk, β) + α2α3...αk−1

∣∣∣∣ β β
β αk + β

∣∣∣∣
= α1H(α2, ..., αk, β) + βα2α3...αk.
Now, it is possible to show recursively that the kth leading principal minor has the sign

of (−1)k. Indeed, one can check that H(α1, β) = α1 + β < 0, and that H(α1, α2, β) =
(α1 + β)(α2 + β) − β2 = α1α2 + (α1 + α2) β > 0. Assume now that the leading principal
minor of order k − 1, 2 6 k 6 n+ 1, has the sign of (−1)k−1, then H(α2, ..., αk, β) has the
sign of (−1)k−1. Consequently, in the expression above, α1H(α2, ..., αk, β) and βα2α3...αk
have both the sign of (−1)k, therefore the kth leading principal minor H(α1, ..., αk, β) has the
sign of (−1)k.
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