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Abstract

In network investments, much of the real options value may reside “in”
identifying the proper configuration to develop, in terms of the timing and
sizing of its deployment. A longer-term perspective, with a treatment of un-
certainty that moves beyond simply increasing deterministic specifications, has
the potential to improve the design of networked infrastructures, such as power
transmission networks. In this paper we present a new model for Transmission
Network Expansion Planning, with uncertainty in demand, which considers
investments in transmission lines as a portfolio of real options, and use this
model to study the impact of uncertainty and demand correlation in basic
network building blocks. Our analysis confirms the value of network sources
of operational flexibility in a multi-stage setting. The results also show that
uncertainty increases the network value in a non-monotonous way, due to the
load curtailment costs and discrete capacity expansions, and higher demand
correlations do not necessarily lead to reductions in the network value.

Keywords: Real options, Investment timing, Portfolios of real options, Trans-
mission network expansion planning, Capacity expansion
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1 Introduction

Transmission Network Expansion Planning (TNEP) is the problem of identifying
the structure that an energy transmission network must have in order to allow
a set of populations, located at its demand nodes, to fulfill their energy needs.
This problem can be viewed as a particular case of a broader class of problems
concerned with the design of networked engineering systems. Uncertainty is a key
consideration in the design of these systems, as they are long lived, and interact
with many and diverse contextual factors. However, these problems are usually
addressed from a static perspective, neglecting the impact of uncertainty, and the
evolution of uncertainty in time, in particular.

In this latter perspective, TNEP can be viewed as a problem of designing a phys-
ical system whose expansions are real options (Dixit and Pindyck 1994): TNEP
investments are irreversible decisions, with significant costs associated, some lee-
way regarding their timing and dynamics, and made in the presence of significant
uncertainties, for example regarding generation capacity and demand (Bustamante-
Cedeño and Arora 2008).

Furthermore, TNEP is concerned with real options ”in” projects (de Neufville
and Scholtes 2011, Wang and de Neufville 2005): flexibility can be designed in the
network, to address uncertainty in the future evolution of generation capacity or
demand; with each new identified investment opportunity the complexity of the
network increases significantly; path-dependency is crucial to reflect the impacts
of capacity expansion in each possible scenario; the values of expansions are in-
terdependent due to the existence of correlated demands and the fact that some
expansions yield results similar to other expansions; the technical aspects of trans-
mission networks can not be neglected.

TNEP can also be usefully conceptualized as a portfolio of real options, i.e.,
combinations of assets and real options associated with these assets that are subject
to risk and constraints (Brosch 2008). Findings suggest that with real options value
additivity does not hold (Trigeorgis 1993), thus a valuation of the whole portfolio
of real options is required in order to determine its aggregate value. However,
unlike the approach of Brosch (2008), we do not view decisions as switches between
modes, but as options to expand the network, with new corridors that open up the
possibility of investing in subsequent corridors, and increases in the number of lines
in a corridor, allowing a higher power flow to meet demand. Moreover, this work
includes a more complex treatment of the technical aspects of a physical system,
going beyond economies of scale, to address aspects such as energy flows and energy
losses.

Previous research in TNEP under uncertainty has considered two-stage models,
with investment decisions under uncertainty, and network flow decisions made after
uncertain parameters are revealed (Delgado and Claro 2011, Bustamante-Cedeño
and Arora 2008). In this work, we extend that line of research, by introducing
a multi-stage dimension (Claro and Sousa 2010, Ahmed et al. 2003), in order to
understand the impact of leeway in the postponement of network configuration
decisions. Our model is a mixed integer linear programming formulation of TNEP,
based on the linearization suggested by Alguacil et al. (2003). Chow and Regan
(2011) also address multi-period network design under uncertainty, but considering
origin-destination demand, in the context of transportation networks, and using a
heuristic approach to solve a lower bound model formulation.

This paper unfolds as follows: section 2 introduces the optimization model, sec-
tion 3 describes a numerical study focused on a set of three basic network building
blocks, and section 4 presents key conclusions and suggestions for further develop-
ments.
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2 Model

2.1 Network Notation

To differentiate clearly between the network and the binomial tree, we will use the
term bus for a network node, and the terms corridor and line for the links between
buses. As such, a corridor can consist of any number of lines, depending on the
investment decisions that maximize the total expanded net present value.

The network includes a set of buses B, of which BS are supply buses, BD are de-
mand buses, and eventually a third part are intermediate buses. Thus, the following
conditions must hold:

BS ⊂ B
BD ⊂ B

BS ∪ BD ⊆ B
BS ∩ BD = ∅

Any bus can be either a part of subset BS or BD, however no bus can represent
both generation capacity and population demand.

The set of corridors C consists of all possible pairs of buses, excluding identical
pairs, and can be defined as the Cartesian product of sets, with the pairs (i, i)
removed. CA is the subset of allowable connections, which allows the enforcement
of different configurations. As direction is meaningless, i.e., energy can flow both
ways, CA must be enforced to include the corridor (j, i) if the corridor (i, j) is
present:

C = (B × B)\{(i, i)|i ∈ B}
CA ⊆ C,∀(i, j) ∈ CA∃(j, i) ∈ CA

The set K is introduced to distinguish between lines in corridors, and a Cartesian
product of sets is used to identify each line in each corridor, in a new set designated
by X . To simplify the formulation of constraints in our model, we will use x as
a tuple that represents the starting bus i, the end bus j, and the line k; for the
opposite direction, we will switch i with j and express it as y:

X = CA ×K
x = {i, j, k} ∈ X
y = {j, i, k} ∈ X .

2.2 Modeling the Porfolio of Real Options

Demand is, in general, considered as the key uncertain factor influencing the con-
figuration of transmission networks. Other stochastic factors, such as selling prices
or investment costs, were considered here as deterministic, to preserve simplicity in
analysis.

The evolution of demand is modelled as a geometric Brownian motion (Marathe
and Ryan 2005), with Di designating the demand, and µi and σi, respectively, the
trend and standard deviation of the evolution of demand, all corresponding to bus
i:
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dDi = µiDidt+ σiDidWi, i ∈ BD.

A second key aspect in the description of the behavior of demand is the joint
variation of population demands, that we characterize with the matrix of correlation
coefficients ρ.

We compute the joint decisions of the portfolio of real options by numerical ap-
proximation using a binomial tree, following the approach of Cox et al. (1979),
expanding it to the whole set of decisions being taken, and considering path-
dependency (Figure 1).

Figure 1: Path-dependent binomial tree for two underlying demands

For each uncertain demand, we have at each time stage an up move and a down
move. However, a node which has as predecessors, for example, an up move followed
by a down move, must be differentiated from one preceded by a down move followed
by an up move. This way, instead of having i+1 new nodes for each new time stage,
where i is the index of the time stage, we will have, at each time stage, 2i new nodes.
With n time stages, the total number of nodes will be

n∑
i=0

2i.

Considering multiple different demands, with a multidimensionality of U , and
an up and a down move for each, at each time stage and each node 2U nodes will
be added. The set of nodes in this path-dependent binomial tree is called N , and
its total number is

|N | =
n∑
i=0

(2U )i.

In order to work with scenarios in the tree, we consider the subset M ∈ N of
the terminal nodes of the tree, a function a(n) that returns the node that precedes
node n, and a function t(n) that returns the time stage for node n (the time stage
for the root node is zero). A scenario is a path in the tree, from the root node (node
0) to a terminal node.
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This problem can not be solved using backward induction alone. The investment
decisions in any node, in general, influence the investment decisions in previous
nodes in the same scenario, up to the root node. Although this is not the situation
that is most commonly found in real options analysis, in this model, due to the
additive nature of installed capacity, in general, all the investment decisions in the
nodes of the subtree of a certain node will depend on the investment decisions in
this node. As a consequence, in general, all the investment decisions in all nodes
depend on all the other investment decisions in all the other nodes, which requires
considering the binary tree as a whole for decision making.

Due to the increase in computational complexity caused by the interdependence
between all decision nodes, and the fact that we are addressing a situation with
multiple demands, we limit our analysis to instances with three time stages, and
two population demands, which enables us to look for insights from the analysis of
optimal solutions.

The probability of each scenario is computed by the joint probability of all nodes
in its corresponding path. For each scenario, and the respective terminal node m,
the probability is Prob(m): ∑

m∈M
Prob(m) = 1.

We compute the up and down factors, and respective probabilities, as Brosch
(2008), for two underlying assets:

ui = eµi∆t+σi

√
∆t

di = eµi∆t−σi

√
∆t

p1 =
1

4
[1 + ρ1,2] , u1, u2

p2 =
1

4
[1− ρ1,2] , u1, d2

p3 =
1

4
[1− ρ1,2] , d1, u2

p4 =
1

4
[1 + ρ1,2] , d1, d2.

Considering the subsets of nodes in each scenario S(m) ⊂ N , the expanded net
present value is given by the sum of the present value of all net cash-flows of all
nodes in a scenario, weighted by the scenario’s probability:

Expanded Net Present Value =
∑
m∈M

Prob(m)

 ∑
n∈S(m)

Net Cash Flown

 .
It should be noted that a node that is part of several scenarios will have its value

weighted by the sum of the probabilities of all the scenarios that it is a part of. As
a particular case, the root node, since it is a part of all scenarios, will have its full
value reflected on the expanded net present value.

We assume that the net cash-flow of each node n is composed of an operational
part CFn and an investment In. For each scenario, i.e., each m ∈ M we also
add a perpetuity component, using Gordon’s model. Substituting, accounting for
the time-value of money under risk-neutrality, and maximizing the expanded net
present value, we get the objective function
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max
∑
m∈M

Prob(m)

 ∑
n∈S(m)

[
CFn − In

(1 + r)t(n)∆t

]
+

CFm(1 + g)

(r − g)(1 + r)t(m)

 , (1)

In equation 1 we express the fixed risk-free interest rate by r, the time interval
between stages by ∆t, and the growth rate of the perpetuity by g. Compound rates
are not used to simplify the presentation of the perpetuity. As explained above, this
modelling approach reflects the need to evaluate all the decisions in all the nodes
of the binomial tree at the same time to account for their interdependencies.

The operational cash-flow is given by

CFn =
∑
i∈BD

[(Di,n − Γi,n)δi − Γi,nγi]−
∑
i∈BS

Ei,nci , n ∈ N . (2)

Its computation requires knowing the amount of demand we are able to satisfy at
a price δi, at all demand buses in each node, which is given by the difference between
the demand Di,n and the amount of unfulfilled demand, i.e., the load curtailment
Γi,n. We also consider an opportunity cost for unfulfilled demand, γi, and the cost
of energy consumption Ei,n, i.e., the demand fulfilled and the power losses in the
network, with a unit cost of ci. Prices and costs are assumed fixed through time.

In any node, the current network configuration is given by the sum of previous
investments Ω and current investments ω:

Ωx,n = Ωx,a(n) + ωx,n ,∀n > 0 ∈ N , x ∈ X (3)

Ωx,0 = ωx,0 ,∀x ∈ X (4)

Ωx,n = {0, 1} ,∀n ∈ N , x ∈ X (5)

ωx,n = {0, 1} ,∀n ∈ N , x ∈ X . (6)

It should be noted that we assume no lead time for the investments to be oper-
ational, as we are considering a time step sufficiently large to allow for construction
and use. This assumption could later be relaxed either by reducing the contribution
of ω or by postponing its effects. Ω and ω are binary variables that have a value of
1 if line x has been built or 0 if it has not (5 and 6).

The total investment cost in any given node n, In, is then simply computed by
adding up all the costs C of the new lines:

In =
∑
x∈X

Cxωx,n , n ∈ N . (7)

2.3 Adding the Transmission Network Expansion Planning
Constraints

In this subsection we present all the technical constraints that are included in the
model, with a brief description and pointing to appropriate references for further
detail.

2.3.1 Network Flow

The constraints that model the network flows are the following:
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Ei,n − (Di,n − Γi,n)−
∑
x∈X

[
fx,n +

1

2
hx,n

]
= 0 ,∀n ∈ N , i ∈ B (8)

fx,n = −fy,n ,∀n ∈ N , x, y ∈ X (9)

hx,n = hy,n ,∀n ∈ N , x, y ∈ X (10)

0 ≤ Ei,n ≤ Emaxi ,∀n ∈ N , i ∈ BS (11)

− Fmaxx Ωx,n ≤ fx,n ≤ Fmaxx Ωx,n ,∀n ∈ N , x ∈ X (12)

0 ≤ hx,n ≤ Fmaxx Ωx,n ,∀n ∈ N , x ∈ X (13)

fx,n +
1

2
hx,n ≤ Fmaxx Ωx,n ,∀n ∈ N , x ∈ X (14)

− fx,n +
1

2
hx,n ≤ Fmaxx Ωx,n ,∀n ∈ N , x ∈ X (15)

Equation 8 states that a bus can not store energy. All energy supplied E either
serves demand, or flows to another bus, f , with losses h. Equations 9 and 10 relate
the flow in any line between buses (i, j) to its symmetric in (j, i), holding the sign
for losses. Non-negativity of supplied energy is enforced through equation 11, with
a maximum value possibly defined using Emax. Equations 12, 13, 14 and 15 define
limits Fmax for the flow and losses in each line, individually and jointly. Further
detail can be obtained, e.g, in Bustamante-Cedeño and Arora (2008).

2.3.2 Linearized Flow and Losses

The linearization of power flows and losses is achieved with the following constraints:

− (1− Ωx,n)M∗ ≤ fx,n
Bx

+ (θ+
i,j,n − θ

−
i,j,n) ≤ (1− Ωx,n)M∗ ,∀n ∈ N , i, j ∈ B, x ∈ X

(16)

0 ≤ −hx,n
Gx

+

L∑
`=1

αi,j,n(`)θi,j,n(`) ≤ (1− Ωx,n)M∗∗ ,∀n ∈ N , i, j ∈ B, x ∈ X

(17)

L∑
`=1

θi,j,n(`) = θ+
i,j,n + θ−i,j,n ,∀n ∈ N , i, j ∈ B

(18)

θi,n − θj,n = θ+
i,j,n − θ

−
i,j,n ,∀n ∈ N , i, j ∈ B, x ∈ X

(19)

θ+
i,j,n ≥ 0 ,∀n ∈ N , i, j ∈ B, x ∈ X

(20)

θ−i,j,n ≥ 0 ,∀n ∈ N , i, j ∈ B, x ∈ X
(21)

θref = 0. (22)

This set of equations is a linearised approximation of the equations for power
flows and losses

fi,j = −Bsin(θi − θj)
hi,j = 2G(1− cos(θi − θj)),
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where B and G are the susceptance and conductance of the line and θ denotes
the voltage angle of the bus.

The detailed explanation of the linearisation process can be found in Alguacil
et al. (2003).

3 Numerical Study

3.1 Data

To study the impact of the timing of investments on network configuration, we will
consider three different transmission network “building blocks”: independent, radial
and meshed designs. The choice of these building blocks is based on the studies by
Delgado and Claro (2011) and Van Mieghem (2007).

Figure 2: “Building blocks” of network design

Figure 2 shows a representation of the three network designs. Circles represent
buses, and connections represent allowed corridors. The number on the right side
of each bus is the corresponding index value. A corridors is denoted by the pair of
index values of the buses it connects.

The independent design features two separate corridors that serve two demands.
Even if operationally one might not find any synergies among the two investments,
as they can be seen as two separate networks, depending on demand correlations
it is possible to observe a portfolio effect, which makes the whole investment, in a
financial perspective, less risky.

Like the previous design, the radial design also has different corridors for the two
demands, but additionally it includes a common corridor between the generation
bus and an intermediate bus. This way it may be possible to benefit not only from
financial advantages, but also from operational advantages, e.g., of the pooling of
demands in the shared corridor, which might compensate for an increase in the
total distance in which power is transported. As we will be considering constant
distances between generation and demand buses, and this design implies not using
the shortest distances between them, higher power losses are expected.

The meshed design is also similar to the independent design, but it considers
an additional corridor between the two demand buses. This additional corridor
becomes valuable if situations of overcapacity in one demand bus and undercapacity
in the other demand bus are likely to occur. Investing in this new added corridor will
allow energy to flow between demand buses taking advantage of already existing
capacity, but it will only be interesting if that benefit outweighs the increase in
losses, as in the case of the radial design.
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Corridor 1-4 500
Corridor 2-4 500
Corridor 3-4 300
Corridor 1-3 215
Corridor 2-3 215
Corridor 1-2 200

Table 1: Corridor lengths (in kilometers)

Table 1 summarizes the corridor lengths that we considered for this numerical
case. The lengths of corridors were chosen such that 1-2 is lower than 1-4 and
2-4, and additional value exists for the meshed design. Corridors 1-4 and 2-4 are
equal, which allows us to find symmetric results. As for the corridor 3-4, its length
was chosen to allow the Euclidean distances in 1-3 and 2-3 to be close to a round
number.

We use similar technical data for all lines, the differences depending only on the
corridor length. We define a unit of demand as 50 MVA, and base voltage as 220 kV,
which results in a base impedance of 968 Ω. Line resistance and conductance are
respectively 0.07 Ω/km and 0.05 Ω/km, and the line cost is 70.00 AC/(MW·km).
Energy cost is 0.0003AC/MWh which corresponds to 131.40AC/unit. The price is
248.33AC/unit, to yield a 0.5 critical fractile (Van Mieghem 2007), assuming a 25
year annuity on the investment cost of corridors 1-4 and 2-4. The load curtailment
cost is assumed to be 12 times the charged price, 2980.00AC/unit.

Susceptance and conductance are calculated using line resistance (R) and reac-
tance (X), as follows:

Bx = − Xx

R2
x +X2

x

Gx =
Rx

R2
x +X2

x

The binomial tree has two time steps, and reflects a long-term planning schedule,
with a ∆t of 5 years. We define both µ1 and µ2 as 5%, the discount rate as 5%,
and for the perpetuity we assume a 0% growth rate.

3.2 Network Value

We perform this set of computational experiments with the IBM ILOG CPLEX
Optimizer, seeking to study the impact of demand uncertainty and correlation in
network configuration and value. We optimize each design, considering increases in
the standard deviations of the demands, from 0% to 30% of the mean, in steps of
10%, and in correlation, from -1.0 to 1.0, in steps of 0.5. We initially assume that
σ1 and σ2 are equal.

For the independent design, as can be observed in Figure 3, demand correlation
does not affect the network value, since the lines are completely independent. In-
creasing demand uncertainty increases the expanded net present value, however this
does not happen in a monotonous way. For standard deviations of 0% and 10%, the
discrete nature of the investments, in situations of load curtailment, leads to the
possibility that slight increases in demand will not translate into profitability when
adding a new line to a corridor, with the extra demand resulting only in an increase
in costs. However, when uncertainty increases, that additional investment can be-
come profitable, by reducing load curtailment costs and increasing the amount of
demand fulfilled.
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Figure 3: Independent design with equal standard deviations
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Figure 4: Radial design with equal standard deviations

The results for the radial design, presented in Figure 4, show that correlation
now does play a role in the project value. Comparing this design with the previous,
it is evident that as correlation gets more negative the expanded net present value
tends to increase even if the total distance that energy travels and losses are higher.
The usage of the common corridor tends to stabilize at lower correlations, reducing
the likelihood of overcapacity or undercapacity. Additionally, for high correlations
this design can perform worse than the independent design, as the benefits of pooling
power demands disappear when they tend to have the same behaviour, and losses
increase due to the increase of total length between the generation bus and demand
buses. The effect reported for the independent design, related to discrete capacity
investments and load curtailment costs, can also be seen with this design, for higher
correlations.

In the meshed design, whose results are displayed in Figure 5, although the
general trend is a reduction of value with increasing correlations, in the case of
a 30% standard deviation, the maximum value is obtained with a -0.5 demand
correlation, and in the case of 20%, the evolution of value is convex.

We also performed a set of computational experiments with different standard
deviations, starting from equal values of 20%, and then introducing variations of
+5% in one standard deviation, and -5% in the other. For lower variations, the
value of the network tends to decrease, but as the variations increase, up to the
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Figure 5: Meshed design with equal standard deviations

point where one demand is deterministic, the value of the network starts to increase
again. In the meshed design it is also possible to see more clearly how an increase in
correlation does not always lead to a decrease in value. For standard deviations of
5%-35%, we find a convex relation, and for 15%-25%, the value is always increasing
with correlation.

3.3 Network Configuration

Under the settings used for this numerical study, for each design and level of un-
certainty, correlation does not have an impact on the evolution of the network
configuration in the scenario tree, although it has an impact on the network value.
The changes in value are in fact determined only by the changes in node proba-
bilities, as the correlation changes. This is related to the fact that the network
investments take place as late as possible, under these settings.

To illustrate this, we present in Figure 6 the possible evolutions of network
configurations when the demands have the same standard deviation of 10%. The
corresponding probabilities are included in Tables 2, 3, and 4.

Comparing the independent and radial networks, the evolutions of the configu-
rations of the corridors that connect to demand buses are exactly the same. For the
shared corridor in the radial design, where the demands are pooled, the diversity
of alternative evolutions in the scenario tree is higher. This is evidence of a finer
adjustment to demand, which translates into benefits that even outweigh the addi-
tional costs of losses related to the higher length of the corridors from generation
to demand.

As for the independent and meshed networks, the evolutions of the configura-
tions are the same, except for the fact that on the second time step a truly meshed
configuration may emerge, with a corridor connecting both demand buses and a
lower investment in one of the other corridors. The investment costs for this config-
uration are lower, and allow the investor to use the structure already in place, that
might be underused by a possible decrease in one of the demands, to meet the other
demand. The differences found on the probabilities of corridors 1-4 and 2-4 on the
second time step are due to the new corridor. As the configuration is symmetric,
swapping the probabilities of 1-4 and 2-4 would yield the same results.
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Figure 6: Possible number of lines by configuration, corridor and time step (σ1 =
σ2 = 10%)

Corridor 1− 4 2− 4
Time Step 1 2 1 2

Number of Lines 1 2 2 3 1 2 2 3

Correlation

-1.0 50% 50% 75% 25% 50% 50% 75% 25%
-0.5 50% 50% 75% 25% 50% 50% 75% 25%
0.0 50% 50% 75% 25% 50% 50% 75% 25%
0.5 50% 50% 75% 25% 50% 50% 75% 25%
1-0 50% 50% 75% 25% 50% 50% 75% 25%

Table 2: Probabilities of total number of lines by corridor and time step for the
independent design(σ1 = σ2 = 10%)

Corridor 1− 3 2− 3 3− 4
Time Step 1 2 1 2 1 2

Number of Lines 1 2 2 3 1 2 2 3 2 3 4 3 4 5 6

Correlation

-1.0 50% 50% 75% 25% 50% 50% 75% 25% 0% 100% 0% 0% 100% 0% 0%
-0.5 50% 50% 75% 25% 50% 50% 75% 25% 13% 75% 13% 20% 59% 19% 2%
0.0 50% 50% 75% 25% 50% 50% 75% 25% 25% 50% 25% 31% 38% 25% 6%
0.5 50% 50% 75% 25% 50% 50% 75% 25% 38% 25% 38% 33% 34% 19% 14%
1.0 50% 50% 75% 25% 50% 50% 75% 25% 50% 0% 50% 25% 50% 0% 25%

Table 3: Probabilities of total number of lines by corridor and time step for the
radial design(σ1 = σ2 = 10%)

Corridor 1− 4 2− 4 1− 2
Time Step 1 2 1 2 2

Number of Lines 1 2 1 2 3 1 2 1 2 3 0 1

Correlation

-1.0 50% 50% 25% 50% 50% 50% 50% 25% 50% 25% 50% 50%
-0.5 50% 50% 25% 50% 50% 50% 50% 23% 52% 25% 52% 48%
0.0 50% 50% 25% 50% 50% 50% 50% 19% 56% 25% 56% 44%
0.5 50% 50% 25% 50% 50% 50% 50% 11% 64% 25% 64% 36%
1.0 50% 50% 25% 50% 50% 50% 50% 0% 75% 25% 75% 25%

Table 4: Probabilities of total number of lines by corridor and time step for the
meshed design(σ1 = σ2 = 10%)
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4 Conclusions

In this paper we propose a new model for multi-stage Transmission Network Ex-
pansion Planning under uncertainty that, to the best of our knowledge, is the first
to address investment in capacity expansion as a portfolio of real options. As the
expanded net present value objective function is developed assuming revenues for
transmitted power, and costs for energy production and load curtailment, without
considering specific regulatory obligations, the model can be regarded as a proof of
concept for the design of power networks and other utility networks, like water or
gas supply, which may be valued and configured following the same analysis logic
and considering their specific technical aspects.

Our analysis confirms the value of network sources of operational flexibility,
such as the shared corridor in the radial design, and the flexible corridor in the
meshed design, in a multi-stage setting. We have also found that, even if increasing
uncertainty tends to increase the network value, due to the discrete nature of line
investments and the existence of load curtailments costs, value losses are possible
for small increases in uncertainty. In addition, we have observed that an increase
in correlation does not necessarily lead to a decrease in value - in some cases the
maximum occurs at perfect correlation, uncorrelated demands, or other levels. This
effect seems considerably more significant in the more flexible network designs.

Future developments may be directed to including in the model additional fea-
tures that improve its relevance to practice, such as regulatory requirements, time
lags for line construction, uncertainty in authorization of construction of new cor-
ridors, generation with variations in power supply, as is typical of wind farms, and
seasonal demand fluctuations.
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