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Abstract 

We derive a multi-factor pre-emption real options game model for a duopoly market where there 

is market and “efficiency after adoption” (“EAA”) uncertainty, and provide analytical or quasi-

analytical solutions for the value functions and investment thresholds of the firms. We show that 

EAA uncertainty has an asymmetric effect on the firms’ investment behavior, delaying 

significantly the investment of the follower and only slightly the investment of the leader; a high 

positive correlation between “market revenue” and EAA delays slightly the investment of the 

leader and significantly the investment of the follower; and the size of the leader’s “first-mover 

market advantage” speeds up slightly the investment of the leader and delays significantly the 

investment of the follower.  
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1. Introduction 

In some circumstances the efficiency (quality) of a new technology becomes apparent only after 

adoption. Consequently, the assumption that a new technology, after adoption, will perform, 

technically, as the developer/adopter predicts is not appropriate for some investment decisions. 

There are two main reasons for the existence of efficiency uncertainty in the adoption of a new 

technology. The first is due to the difficulty of fully testing some technologies before launch. The 

second, concerns the fact that the performance of some technologies after adoption may be 

dependent, at least to some extent, on the quality of the technical skills, human resources, 

organizational culture and management commitment of the adopting firm, characteristics that 

vary over time.  

We relax the assumption often made in real option models which requires that once a technology 

is adopted its performance will be exactly as predicted (see Grenadier and Weiss, 1997, Huisman 

2001, and Murto 2007). Events described in the press such as the delay in the construction of the 

new Airbus A380
3
 and the more recent problem with one of its engines

4
, and the appearance of 

cracks in the boiler pipes of the British Energy number 3 and number 4 nuclear power reactors
5
, 

show that this assumption may not be realistic.  

In this article we study the combined effect of market and efficiency (technical) uncertainty in the 

timing optimization of the adoption of a new technology. “Market uncertainty” represents the 

uncertainty of changes in demand, price and competition (for example, income, tastes, and the 

pricing decisions of competitors can change unpredictably, or a substitute product might arrive 

making the firm’s product suddenly obsolete). “Efficiency uncertainty” is the uncertainty 

regarding the performance of a technology that persists after being adopted. 

The efficiency of a technology after adoption can be quantified using the concept of “efficiency 

production frontier” (“EPF”), from the theory of industrial organization (see Aigner et al., 1997, 

and Coelli et al., 1998)
6
. This concept defines, for a current stage of technological development 

(state-of-the-art), an upper boundary for a firm production performance (efficiency).  The EPF is 

only achieved in the ideal scenario where, after adoption, the technology operates without 

                                                 
3 According to the information released, during the development of the Airbus A380 the delays in the project in late 

2006 appear to be due to technical reasons (the great difficulty in integrating a huge number of new technologies). 
4 For details about the technical failure of the Rolls-Royce engine of the Quantas A380 superjumbo, and subsequent 

expected economic consequences for Rolls-Royce/Airbus, see The Economist, November 13, 2010, p. 80, and the 

Financial Times, December 5, 2010, p. 14. 
5 Technical problems with the British nuclear power reactors forced the company to take the power stations out of 

service for several months and, to avoid further cracks, the reactors were forced to operate in the future at a 70 percent 

load (see Financial Times, November 18, 2006, p. 1). 
6 Other methods can also be used, see for instance Slack and Lewis (2002) and Todinov, M. (2005). 
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technical imperfections and in a context of 100% human efficiency (if the technology needs 

human intervention to operate).  

The “efficiency of the technology after adoption” (“EAA”) is denoted here by ( )E t , with 

 ( ) 0,1E t   and t continuous, where the lower limit represents a “catastrophic scenario”, which 

occurs when after adoption the technology fails completely (operates with zero percent 

efficiency), and the upper limit represents a “perfect scenario”, which occurs when after adoption 

the technology operates with100 percent efficiency. Between these two extreme scenarios there 

are, theoretically, an infinite number of feasible scenarios.
7
  

The importance of each of the uncertainties above depends on the economic conditions 

underlying the investment decision and the type of technology involved. For instance, software 

programs and telecommunication technologies can be almost fully tested in a laboratory before 

launch and are, to some extent, independent of human intervention. Consequently, efficiency 

uncertainty is usually very low. Firms operating in the manufacturing, renewable energy, 

agriculture and mining sectors, for instance, are, usually, exposed to high technical uncertainty 

given that the efficiency of new equipments after adoption is, at least to some extent, 

human/natural resources-dependent and, therefore, cannot be fully tested before adoption. Our 

model is particularly useful for assessing investments on renewable energy technologies, such as 

waves and wind turbines and photovoltaic solar panel whose electricity production efficiency is 

dependent on the weather (wave/wind/sun) conditions.   

Huisman (2001) considers market and technological uncertainty, but neglects technical 

uncertainty. Our model has also some similarities with that of Paxson and Pinto (2005), in the 

sense that both use two underlying variables following gBm processes; however, the underlying 

variables used, “price” and “quantity”, relate only to market uncertainty. Smith (2005) studies the 

effect of revenues and investment cost uncertainty on the adoption of two complementary 

technologies, but neglects competition. Azevedo and Paxson (2011a), extends Smith’s model to a 

duopoly market with a “first-mover market share advantage” (“FMA”). A good survey about the 

literature on new technology adoption models can be seen in Hoppe (2002). For an extensive 

literature review on real option game models see Azevedo and Paxson (2011b).  

                                                 
7 In section 2, ( )E t  is defined as following a geometric Brownian (gBm) process. Consequently, the domain 

 ( ) 0,1E t   above is inconsistent with a gBm. However, in reality, for most technologies/production processes, 100% 

(daily/monthly/annually) efficiency is rarely achieved.  
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This paper is organized as follows. In Section 2, we describe the model and derive the firm value 

functions and investment thresholds. In Section 3, we show some illustrative results and 

sensitivity analysis. In Section 4 we conclude. 

2. The Model 

In games of timing the adoption of new technologies, the potential advantage of being the first to 

adopt may introduce an incentive for pre-empting the rival, speeding up the investment. 

Reinganum (1981) develops a deterministic game-theoretic approach, where the adoption of one 

firm is assumed to have a negative effect on the profits of the other firm.  The increase in profits 

due to the adoption is assumed to be greater for the leader than for the follower. Fudenberg and 

Tirole (1985) also study the adoption of a new technology and illustrate the effects of pre-emption 

in games of timing. We use the Fudenberg and Tirole (1985) principle of “rent equalization” in 

our derivations.  

In a duopoly market, two idle firms are considering the adoption of a new technology in a context 

where there is uncertainty about both the “market revenues” and the EAA. The technology is 

available and the firm that invests first (the leader) gets a first-mover revenues “market share 

advantage”. “Market uncertainty” is measured as the volatility of the market revenues, “efficiency 

uncertainty” as the volatility of the EAA. Due to spillover information firms are assumed to be 

symmetric regarding the EAA, i.e., the follower adopts the technology latter but from the instant 

it adopts onwards the EAA of both firms are the same. For the sake of mathematical tractability, 

without losing any insight, we assume that firms are not allowed to invest at the same time. To 

proceed with the new technology adoption both firms have to spend a sunk cost I . 

Let ( )X t  be the market revenues and ( )E t  the EAA, with ( )X t  expressed in monetary units and 

( )E t  dimensionless. Both ( )X t  and ( )E t  follow gBm processes given, respectively, by Equations 

(1) and (2): 
8
  

1X XdX Xdt Xdz                   (1) 

2E EdE Edt Edz                   (2) 

where, X  and E  are the instantaneous conditional expected percentage changes in X  and E  

per unit of time, respectively; X   and E  are the instantaneous conditional standard deviation 

of X  and E  per unit of time, respectively; and 1dz  and 2dz  are the increment of a standard 

                                                 
8 For simplicity of notation, hereafter we drop the t. 
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Wiener process for X  and E , respectively. For convergence of the solution we assume 

0X Er     , where r is the riskless interest rate. 

The firm’s net revenue flow is given by: 

i jk kde                    (3) 

where,   is the “Efficiency Weighted Revenues” (“EWR”), given by   X E  ; 
i jk kde  is a 

deterministic competition factor that represents the proportion of the EWR assigned to each firm 

for each investment scenario, with  0,1k  , where “0” and “1” means that the firm is idle and 

active, respectively;  ,  ,i j L F , where L means “leader” and F “follower”.
 9
    

The intuition underlying the first-mover “market share advantage” is the same as that used in 

Dixit and Pindyck (1994) following Smets (1993). Consequently, for the leader, inequality (4) 

holds: 

1 0 1 1 0 0L F L F L F
de de de                            (4) 

Inequality (4) should be interpreted as follows: for the leader, the best investment scenario in 

terms of the market EWR share is when it operates with a new technology (denoted tech 1) alone 

( 1 0L F
de ); the second best investment scenario is when it adopts tech 1 and the follower does so 

later ( 1 1L F
de ); the worst investment scenario is when it is idle with the follower ( 0 0L F

de ). 

The follower’s market EWR share is a complement of the leader’s, i.e.,  1
F L L Fk k k kde de  , so for 

the follower inequality (5) holds:  

1 1 0 1 0 0F L F L F L
de de de                                        (5) 

                                                 
9 To get the intuition about how the multiplicative form ( )( )X E   works in practice, suppose that firm i adopts tech 1 

first, becoming the leader, and firm j adopts tech 1 later, becoming the follower; the market revenues are 100 million 

( 100X  ), the EAA is 100 percent ( 1E  ), and after the follower adoption the market shares of the leader and the 

follower, as a proportion of the market EWR, are 60 and 40 percent, respectively. In this case, the market EWR are 

( )( ) 100(1) 100X E     million, and the competition factors are 1 1 0.6
L F

de  , for the leader, and 1 1 0.4
F L

de  , for the 

follower. In terms of firms’ EWR (Eq. 3) this leads to 60 million ( 1 1 100(0.60) 60
L F

de   ), for the leader, and 40 million 

( 1 1 100(0.40) 40
F L

de   ), for the follower, a FMA of 60 40 20   million. 
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In section 3, we use the following base inputs for the sensitivity analysis:  

 

Investment Scenario  
(Competition Factors: Proportion of the market EWR) 

Both firms inactive 
Leader active/Follower 

inactive 
Both firms active 

Leader’s 
Market Share 

0 0L F
de  

1 0L F
de  

1 1L F
de  

0.0 1.0 0.60 

Follower’s  

Market Share 

0 0F L
de  0 1F L

de  1 1F L
de  

0.0 0.0 0.40 

Total 

Market Share 
0.0 1.0 1.0 

Table 1: Deterministic Competition Factors  

Inequalities (4) and (5), and the information in Table 1, ensure the following conditions: (i) when 

the leader is active alone it gets 100% of the market share; (ii) when both firms are active the 

leader’s market share is higher than the follower’s market share due to the FMA; (iii) at the 

instant the follower becomes active it gets 40% of the market share, i.e., the leader’s market share 

drops from 100% to 60%; (iv) when both firms are active, the sum of their market shares is 100 

percent; (v) when firms are inactive their market shares are null. 

The relation between the competition factors above, inequalities (4) and (5) and the information 

in Table 1, should not be seen as static applying to all duopoly markets, technologies and 

industries, but as expected ex-post leader/follower market EWR share relations that need to be 

defined for each particular investment decision. 

Figure 1 illustrates the linear relationship between EWR ( ) and EAA ( E ). The solid line is 

plotted by setting annual “market revenues” ( X ) equal to 10 million and changing the firms’ 

annual E  from 0% to 100%. Notice that X  and E  are assumed to be stochastic, so   is also 

stochastic. For an annual market revenue of 10 million, if the E  is null the   are null; if the E  is 

100% the   are 10 million (maximum). Between these two extremes, as E  increases,   

increases linearly.  
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X 10    10    10    10    10    10    10    10    10    10    10    

E 0      0.1    0.20    0.30    0.40    0.50    0.60    0.70    0.80    0.90    1    

 φ   0.0          1.0    2.0    3.0    4.0    5.0    6.0    7.0    8.0    9.0    10.0    

Figure 1 – Relationship between EWR and EAA 

In the current real options literature it assumed that the adopter knows, ex-ante, how the 

technology will perform once in place. Embedded in the adoption of a technology and its EAA is 

a certain level of output production (quantity) which once sold generates revenues. So the 

existence of uncertainty about the EAA of a technology introduces extra difficulties in the timing 

optimization of an investment decision in the sense that it is more difficult to plan the fitting of 

the production capacity to be installed with the market demand.   

For an empirical illustration about how the variable EAA works in practice see Appendix A, 

sections 1a,b. 

Figure 2 illustrates the investment thresholds for both firms: 

 

                                     Time   0      
*

L  
                          

*

F            

Figure 2 –Firms’ investment thresholds 

 

where, *

1L


 
and *

1F
  are, respectively, the leader and the follower investment thresholds to adopt 

tech 1.  

2.1 Follower 

Let ( , )FF X E  be the follower’s option value to adopt tech 1 for a context where the leader is active 

with tech 1. Setting the returns on the option equal to the expected capital gain on the option and 

Market revenues, X = 10 
million 



 8 

using Ito’s lemma, we obtain the partial differential equation (6) for the value function of the 

follower for the region where it waits to adopt tech 1.  

2 2 2

2 2 2 2

2 2

1 1
0

2 2

F F F F F

x E x E XE x E F

F F F F F
X E XE X E rF

X E X EX E
      

    
     

    
              (6) 

Using similarity methods 
10

 we can find an explicit closed-form solution for X and E, using the 

following change in the variables:   X E  . Doing the respective substitutions in Equation (6) 

we get the (“Ordinary Differential Equation”) (“ODE”) (7), which describes the follower’s option 

value as a function of  : 

 
22

2

2 2

2

( ) ( )1
( ) 0

2

F F
m X E XE X E F

F F
rF

 
        



 
    


                        (7) 

where, 2 2 2 2m X E XE X E         .  

See full derivation in Appendix B, section 1. Notice that the use of this technique implies that 

EAA is exogenous to firms.
11

   

The ODE (7) has an analytical solution, whose general form is given by:  

1 2( )FF A B
                    (8) 

where, A  and B  are constants to be determined, using the boundary conditions (“value-

matching” and “smooth-pasting” conditions), and 
1  and 

2  are the roots of a characteristic 

quadratic function of an Euler type ODE given by: 

21
( 1) ( ) 0

2
m X E X E r                    (9)  

Solving the Equation (9) for   we get two roots, one positive, 
1 , and one negative, 

2  given 

by: 

 
2

2 2 2

1(2) 2

0.5 ( ) 0.5 2m XE X E X E m XE X E X E m

m

r            




        
                 (10) 

In order to find the follower’s value, FF , and investment threshold, *

F , the following boundary 

conditions apply to Equation (8):    

*

1 1*( ) F LF

F F

X E

de
F I

r




 
 

 
                                                       (11) 

                                                 
10 For a detailed discussion about similarity methods see Bluman and Cole (1974).       

11 This restricts the model to economic contexts where after adoption there is no learning. For instance, renewable 

energy production technologies, such as wind and wave turbines or photovoltaic solar panels, are technologies where 

EAA is exosgenous, i.e., there is not learning from operating with the technology: before adoption there is uncertainty 

about the quantity of wind, wave or sun; after adoption, the higher the quantity of wind, waves or sun per unit of time, 

the higher is the EAA, but firms can not influence the evolution of the EAA. There are other investments where similar 

assumption applies such as those in technologies used in some activities in the agriculture or mining sectors.       
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1 1*( ) F L

F F

X E

de
F

r


  




  
                                                        (12) 

(0) 0FF                                                                             (13) 

Conditions (11) and (12) are the “value-matching” and “smooth-pasting” conditions, respectively, 

and ensure continuity and differentiability of the value function at the investment threshold. 

Condition (13) ensures that the option value is worthless at the absorbing barrier 0  . 

Consequently, in equation (8) 0B  . Solving together Equations (8) and (11)-(13) after some 

algebraic manipulation yields the follower’s investment threshold and value function, given by 

Equation (14) and Expression (15), respectively. 

* 1

1 1 1

( )

1
F L

X E
F

r
I

de

  




 



                         (14) 

with 
1  given by expression (10). The follower’s value function is given by, 

1 *

1 1 *

                         

( )
        F L

F

F

F

X E

A

F de
I

r

  

 
 

 

 


 
 

 

                    (15) 

with  
1(1 )*

1 1

1

F L F

X E

de
A

r



  




 

                         (16) 

 

2.2 Leader 

Assuming that the follower adopts tech 1 as soon as *

F  is reached, at the instant ( ) the leader 

adopts, its payoff is given by, 

1

1

*

1 0 1 1

F

L F L F
F

T
r r

F
t T

E de e d I de e d 


   


 



 
 

                                       (17) 

The first integral represents the leader’s EWR for the period where it is active alone; the second 

integral represents the leader’s EWR for the period where both firms are active with tech 1; I  is 

the investment cost. Applying the methodology used in Dixit and Pindyck (1994), pp. 309-315, 

we get the expression (18) for the leader’s value function.  

1

1 0 1 1 1 0 *

*

1 1 *

( )
     

( )

                                                     

L F L F L F

L F

F

X E X E F

L

F

X E

de de de
I

r r
F

de

r


  

 
    




 
 

   
    

      


  

                                (18) 

where, 1 0L F

X E

de
I

r



 


 
 is the leader’s payoff at the instant it invests if it operates alone forever; 

1

1 1 1 0

*

( )
L F L F

X E F

de de

r


 

  

  
 

   
 is derived using the continuity condition of ( )LF   at *

F . It is negative given 
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that 
1 1 1 0( ) 0

L F L F
de ds   (see inequality 4) and corresponds to the correction factor that incorporates the 

fact that in the future if *

F  is reached the follower will adopt tech 1 and the leader’s payoff will 

be reduced 
12

. 1 1L F

X E

de

r



  
 is the leader’s payoff when active with the follower both with tech 1, 

from *

F  until infinity.  

This is a pre-emption game where the Fudenberg and Tirole (1985) principle of rent equalization 

holds. Therefore, the leader adopts tech 1 at the point where the value functions of both firms 

cross, the point of rent equalization. Hence, equalizing Equations (15) and (18), for *
F  , we 

get Equation (19).  

1

1
1 0 1 1 1 0

*

( )
0L F L F L F

X E X E F

de de de
I A

r r




  


    

  
    

     
                                 (19) 

Replacing in (19)   by *

L  and solving in order to *

L  
we get the leader’s investment threshold 

( *

L ). We use standard numerical methods to solve for *

L . 

3. Sensitivity Analysis 

In this section we study the effect of changing some important parameters values on the leader’s 

and the follower’s investment thresholds. In our illustrative results we use the following base 

(annualized) parameters: 
13,14

 

( )X t  ( )E t
 

( )t  I  X  E  X  E  r  
kXE  

10 0.85 85.0 100 0.20 0.238 0.02 0.00 0.10 0.0 

Table 2 – Market variables  

0 0L F
de

 1 0L F
de  

1 1L F
de  

0.0 1.0 0.60 

Table 3 – Competition factors (leader’ market share)  

 

                                                 
12 This term equals the leader’s loss discounted back from the (random) time at which the follower adopt tech 1. The 

term 1*( / )F
   is interpreted as a stochastic discount factor which is equal to the present value of $1 received when the 

variable   hits *
F  (see Pawlina and Kort, 2006, p. 10).      

13 To rationalize the inputs above (and our results) consider the empirical case (textile technology) described in 

Appendix A, sections a,b, and suppose that the leader while alone in the market gets 100% of the market share and a 

net profit margin of $1 per output (i.e., per meter of textile fabric), with 250 working days per annum. The maximum 

net profit per annum is (28,000m/day)(250working days)=$7,000,000. If, initially, it produces at 85% efficiency the 

profit is ($7,000,000)(0.85)=$5,950,000. For an investment of $100,000,000 the annual return is 5.95%. Suppose that 

when the follower enters the leader’s market share drops to 60%, so annual net profit is reduce to 

($5,950,000)(0.6)=$3,570,000, adjusted for the leader’s efficiency at the time of the follower adoption. 
14 The input for the efficiency volatility (0.238) is from the dataset described in Appendix A, Figure A1. 
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Figure 3 shows our illustrative results for the (ceteris paribus) sensitivity of the follower’s 

investment threshold, *

F , to changes in the volatility of the EAA, 
E .  

  

EWR ( ) 8.5   E  0 0.10 0.20 0.30 0.4 0.50 0.60 0.70 0.80 0.90 1.00 

*

F  36.18 38.14 43.51 51.55 61.93 74.54 89.41 106.56 126.03 147.87 172.09 

Figure 3 - Senstitivity of the Follower’s Investment Threshold to changes  

in the Volatility of the EAA (
E ) 

The results show that *

F  is very sensitive to changes in 
E . Ceteris paribus, the higher the 

E  the 

later is the adoption of the technology. The follower should defer the adoption for the all range of 

E  values used. The efficiency volatility underlying the textile technology described in Appendix 

A (Figure 1) is 23.8%, for which *

F   , i.e., the follower should defer the investment.    

 

Figure 4 shows our illustrative results for the (ceteris paribus) sensitivity of the leader’s 

investment threshold, *

L , to changes in the volatility of the EAA, E .  
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EWR ( ) 8.5   E  0 0.10 0.20 0.30 0.4 0.50 0.60 0.70 0.80 0.90 1.00 

*

L  8.37 8.45 8.65 8.92 9.23 9.54 9.85 10.14 10.64 10.64 10.86 

 

Figure 4 – Senstitivity of the Leader’s Investment Threshold to changes  

in the Volatility of the EAA ( E ) 

The results show that the leader investment threshold is sensitive to changes in the volatility of 

the EAA ( E ), although less sensitive than the follower. The higher the E  the later is the 

adoption of the technology. More especifically, for 0.125E   the curent EWR ( ) is above the 

follower’s investment threshold ( *

F ), i.e., *

F  , so the leader should adopt the technology. For 

0.125E  , the the curent EWR ( ) is below the follower’s investment threshold, i.e., *

F  , so 

the follower should defer the investment. *( ) 0.125E   is the efficiency volatility threshold where 

if it decreases, the leader should adopt the technology, if it increases, the leader should defer the 

investment.  

 

In Figure 5 are our illustrative results for the sensitivity of the investment thresholds of the leader 

and the follower to changes in the first-mover market share advantage. The results are computed 

using the base inputs  and  1 1 0.51,0.55,0.60,0.65,0.70,0.75,0.80,0.85,0.90,0.95
L F

de  . Notice that in a 

duopoly, the market share of the follower is a complement of the market share of the leader, i.e., 

1 1 1 11
F L L F

de de  . Hence, for each 1 1L F
de  above we adjust 1 1F L

de  accordingly. For the inputs used we 

compute the respective “market share advantage” as follow: suppose (i) 1 1 0.51
L F

de  , as 

1 1 1 11
F L L F

de de   so 1 1 0.49
F L

de   (i.e., when both firms are active the leader gets 51% of the market 
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revenues and the follower the remaining 49%), leading to a first-mover market share advantage of 

1 1 1 1 0.51 0.49 0.02
L F F L

de de     (2%); (ii) 1 1 0.80
L F

de  , as 1 1 1 11
F L L F

de de   so 1 1 0.20
F L

de   (i.e., when both 

firms are active the leader gets 80% of the market revenues and the follower the remaining 20%), 

leading to a first-mover market share advantage of 1 1 1 1 0.80 0.20 0.60
L F F L

de de     (60%). Using 

Equation (3) we convert the “first-mover market share advantage” into “first-mover revenues 

advantage”, see footnote 9.     

 

EWR ( ) 8.5   

1 1L F
de  0.51 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 

1 1F L
de  0.49 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 

FMA (%) 2% 10% 20% 30% 40% 50% 60% 70% 80% 

*

L  9.27 9.00 8.74 8.54 8.39 8.26 8.17 8.10 8.05 

*

F  37.28 41.13 46.28 52.89 61.70 74.04 92.55 123.40 185.10 

 

Figure 5 – Sensitivity of the Firms’ Investment Thresholds to changes in the  

Leader’s Market Share when both Firms active ( 1 1L F
de ) 

The results show that the follower’s investment threshold is very sensitive to changes in 

the FMA, particularly when the asymmetry between the ex-post market share of the 

leader and the follower is very high. Ceteris paribus, the higher the first-mover market 

share advantage the later is the follower adoption. The leader’s investment threshold is 

not very sensitive to changes in the FMA (reacts slightly in the opposite direction to that 

of the follower, i.e., the higher the FMA the slightly earlier is the adoption). Notice that in 

a leader/follower duopoly (one-shot) game, as soon as the leader invests the follower is in 



 14 

a “monopoly-like” regarding its “option to invest”, therefore, the investment behavior 

above for the follower can be seen as a proxy of the investment behavior of  monopolistic 

firms. For the base inputs and the all range of the leader/follower market shares above, 

the leader should adopt the technology (since *

L  ) and the follower should defer the 

investment (since *

F  ).  

In Figure 6 are opur illustrative results for the sensitivity of the firms’ investment threshold to 

changes in the correlation between “market revenues” and “EAA”.  

 

EWR ( ) 8.5   

XE  -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

*

L  8.00 8.02 8.13 8.30 8.51 8.74 9.01 9.31 9.64 10.02 10.47 

*

F  20.48 25.26 29.63 34.35 39.78 46.28 54.35 64.78 78.92 99.33 131.56 

Figure 6 – Sensitivity of the Firms’ Investment Thresholds to changes in the  

Correlation between “market Revenues” and “EAA” ( r
XE

) 

The correlation between the “market revenues” and the “EAA” ( XE ) has a negligeable effect on 

the leader’s threshold and a significant effect on the follower’s threshold specially for high 

positive correlation values. 

4. Conclusion and Further Research 

Our model challenges the view underlying the current real option literature, which assumes that a 

technology once adopted will perform exactly as predicted by the adopter/developer. We provide 

a real option model based on more realistic assumptions. Our results show that efficiency 

(technical) uncertainty has an asymmetric effect on the leader’s and the follower’s investment 
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behavior, delaying significantly the investment of the follower and only slightly the investment of 

the leader. These differences are due to the so called effect of the “fear of pre-emption” which 

affects the leader (turning efficiency uncertainty a less relevant variable), and does not affect the 

follower. Notice that as soon as the leader invests the follower is in a “monopoly-like” regarding 

its “option to invest”, hence our results for the follower can be taken as a proxy of monopolistic 

investment behaviors.  

We found that the size of the leader’s FMA, speeds up slightly the investment of the leader and 

delays significantly the investment of the follower and that a high positive correlation between 

“market revenue” and EAA delays slightly the investment of the leader and significantly the 

investment of the follower. 

In our model firms are not allowed to improve EAA due to learning. EAA is assumed to be an 

exogenous variable, i.e., firms are ex-ante/ex-post symmetric in their capability to operate with 

the technology and after the follower adoption the EAA is uncertain but the same for both firms. 

It would be interesting, however, to extend our model to the case where the evolution of EAA is 

firm-specific, allowing for ex-post efficiency asymmetries between firms. In addition, our model 

is based on two stochastic underlying variables (market revenue and EAA), where there is a FMA 

(pre-emption game). It would be interesting to add a third underlying variable, “technological 

uncertainty”, studying the simultaneous effect of “market”, “technical” and “technological 

uncertainty” on the timing optimization of the adoption of a new technology, and to consider the 

case where there is a “second-mover advantage” (attrition game). Finally, we use a competition 

framework where the FMA is based on deterministic competition factors defined as proportions 

of the market EWR. Although mathematically challenging, it would be interesting to refine this 

assumption using dynamic market share for both firms.   
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Appendix A  

1. Efficiency: the case of a weaving technology 

Figure A1 shows empirical data about the “daily EAA” of a weaving technology over 262 days.  

 

Figure A1 

 

To rationalize the usefulness of our real option model, suppose that there is a weaving mill where 

machines and equipments need to be replaced and that a new version (not yet tested in the market) 

of the weaving technology currently in place has arrived in the market. Suppose that the supplier 

advertises that the new technology after being adopted will operate with 96% efficiency and that 

such estimation seems very optimistic to the adopter. Consequently, as a precautionary method, the 

adopter decides to assess the investment assuming that the EAA of the (not yet tested) weaving 

technology will be more or less like that of the current weaving technology in place (Figure A1), 

where we can see that, in the first 45 days, the efficiency is between 83 and 89 percent, in the last 

30 days, the efficiency is between 92 and 95 percent, and between these two periods, the efficiency 

improves gradually. In the last months the volatility of the EAA of the technology decreases. 

a. Measuring Efficiency: the case of a weaving technology 

A weaving technology produces textile fabrics (output). Its output production is measured in 

“meters/day” ( /m day ) and depends on the technical specificities of the fabric (or mix of fabrics) 

that is(are) being produced, more specifically the “quantity of yarns per linear meter of fabric”. For 

the same EAA, the higher the “quantity of yarns per linear meter of fabric” the lower is the output 

production ( /m day ). In Figure A2, the solid line describes the relationship between the “daily 

EAA” and the “daily output production”, for a particular weaving technology/output. There is a 
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linear relationship between the “daily EAA” and the “daily production”. When the “daily EAA” is 

zero, the “daily production” is zero, when the “daily EAA” is 100%, the “daily production” is 

28,000 meters of fabric (maximum). For a given weaving technology, the slope of the solid line 

depends on the technicalities of the textile fabric(s) that is being produced (output-specific) - the 

more time-consuming the production of one output unit (meter) the lower is the slope of the solid 

line.
15

 

  

Figure A2 

 

b. The Variable Efficiency ( tE ) 

The variable EAA ( tE ) is defined in its most general form as:  

[  ]

[  ]

t

t

t

Actual output
E

Effective capacity
                   (A1) 

where, tE  is the EAA per unit of time t; [  ]tActual output  is the output produced per unit of time t; 

and [  ]tEffective capacity  is the production capacity per unit of time t, for the scenario where the 

technology operates after adoption with 100% efficiency. Defining t as “day” (A1) becomes, 

[  ]

[  ]

day

day
day

Actual output
E

Effective capacity
                      (A2) 

 

The slope of the solid line in Figure A2 is given by: 

                                                 
15

 Our empirical data is about the efficiency of a weaving technology over 262 days where there were no 

changes in the mix of outputs produced. Notice that the efficiency/production of two weaving mills can only 

be compared if they produce the same type of output or different outputs but with similar technical (time-

technology-resources) requirements. 

28.000 
m 
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q
C

E





                     (A3) 

where 
2 1q q q   , 

2 1E E E   , with 
1 1( , )q E  and 

2 2( , )q E  defining any two points on the solid line. 

  

For the output ( )i /weaving technology underlying our data, the slope of the solid line is given by: 

28,000i

q
C

E


 


         (A4) 

Defining the time unit as “day”, the relationship between “EAA per unit of time” (%) and “output 

production per unit of time” (meters) is given by:   

day i dayq C E                    (A5) 

For our data 28.000iC  . Hence, knowing dayq , we determine dayE , using (A5), and vice-versa. For 

instance, if for a particular “day” the weaving technology produces 24.500 meters of fabrics 

( 24.500 mdayq  ), using (A5), we determine that the weaving technology operated on that day with 

an efficiency of 24.500 / 28.000 0.875dayE    (87.5%). 

 

Appendix B 

1. Derivation - Ordinary Differential Equation (7) 

Rewrite Equation (6) as, 
2 2 2

2 2 2 2

2 2

1 1
0

2 2

F F F F F

x E x E x E F

F F F F F
X E XE X E rF

E X X EX E
      

    
     

    
                      (B1) 

In order to reduce the homogeneity of degree two in the underlying variables to homogeneity of 

degree one similarity methods can be used. Let ( )( )X E  , so: 
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
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 
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
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 

 
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 

 


 

  
 

  

 

Substituting back to Equation (B1) we obtain Equation (7), rewritten here as: 

 
2

2 2

2

( ) ( )1
( ) 0

2

F F
m X E XE X E F

F F
rF

 
        



 
    


                             (B2) 

where, 2 2 2 2m X E XE X E        .  


