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Abstract

In this paper, we develop a numerical algorithm that sets rules for
investment in hydrogen infrastructure under both demand and costs un-
certainties. In fact, the growth of the number of oil-fuled cars (which we
call the demand) is a major source of uncertainty, as a high number of
cars increases pollution and, on the other hand, makes a migration for a
hydrogen transport necessary. In the same time, the investment cost is
decreasing stochastically with time due to the worldwide R&D effort. We
first develop a model, based on the IPAT method, to calculate the real
cost of transport externalities. Using the real options method, we then
show how to maximize inter-generational utility by choosing the optimal
time to invest. We make use of a dynamic programming approach to de-
velop an algorithm that gives, at each future moment, the thresholds for
demand and cost for which it is better to invest. We calculate the ex-
pected waiting time until investing and show that we must wait a longer
time before investing when the uncertainty is high.

1 Introduction

Transport is today fueled to a very large extent by oil. This is of great relevance
from an environmental perspective, notably in view of climate change. Hydrogen
has then been proposed as a long-term alternative for oil, as it is the ”forever
fuel”, producing no harmful carbon dioxide emissions when burned and giving off
as byproducts only heat and pure water. All that needs to be done is to extract
hydrogen from various elements so that it is usable in fuel cells. Furthermore,
the transition from a petroleum-based energy system to a hydrogen economy
requires the construction of many new hydrogen plants and fueling stations,
which involves large costs. Large R&D effort is then done to make the transition
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possible at a lower cost and to improve the lifetime of products, reduce costs
and increase technical maturity.

In this paper, we consider a project consisting of building new hydrogen
infrastructures under two kinds of uncertainties whose impact should to be
correctly evaluated before any investment could be undertaken. In such circum-
stances, the decision makers have a tendency to delay such important investment
which are highly uncertain. But delaying the investment is not always a good
solution and we must, at a certain time, undertake the investment. In this
work, we develop a method to determine whether it is optimal to invest at a
given instant in a project whose cost is subject to uncertainty. Furthermore, we
consider an additional uncertainty related to the demand of the project: The
increase of the transport demand increases the number of cars and generates
more externalities. We use the decision tree analysis to solve this problem and
decide whether to invest or not. We also obtain, if the decision is to delay the
project construction, the expected waiting time before investment. Note that
the problem of investing in hydrogen motors was studied in [1], but only the cost
uncertainty was considered, without taking into account the uncertainty related
to the market demand. In our work in [4], we developed a closed-form solution
for the population level for which it is optimal to invest in a project whose cost
is constant and where the demand is growing following a geometric brownian
motion. In this paper, we develop a general algorithm that helps making de-
cisions in a sustainable transport project where both cost and demand grow
stochastically. We also considered a more realistic model where the demand
does not grow geometrically but remain limited.

2 Costs of transport environmental impacts

There is widespread scientific agreement that the increased concentrations of
greenhouse gases (GHGs) are the consequence of human activities around the
globe. Among these anthropogenic factors, the principal ones (often called
”driving forces”’) are (i) population, (ii) economic activity, (iii) technology, (iv)
political and economic institutions, and (v) attitudes and beliefs [2].

Although there is a growing recognition of the important linkages between
population and the environment, our understanding of exactly how these link-
ages operate is still rather limited. We may intuitively understand that human
populations and their activities cause environmental change and that environ-
mental change in turn affects the quality and condition of human lives, but
the specific details of these interactions are still largely speculative. Popula-
tion growth is widely regarded as an important cause of air pollution, and air
pollution has shown to have serious adverse impacts on human health. Popula-
tion growth causes air pollution, and air pollution reduce the rate of population
growth. However the feedback is rather weak, since several studies suggest that
urban air pollution may account for about %2 of all local death [3]. On the
other hand, urban air pollution may have a larger impact on net migration than
morality [3]. However, most of researchers have considered only the impact of
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population on pollution. In the next paragraphs we will present certain models
that consider population as an actor of environmental treatement.

2.1 IPAT model description

The (IPAT) framework adopts the formulation: Impact= Population·Affluence·
Technology. This framework, first proposed in the early 1970s by Ehrlich &
Holdren as a part of a debate on the driving forces of environmental change,
incorporates key features of human dimensions of environmental change into a
model as follows:

I = P.A.T (1)

where I is environmental impact, P is population, and A is affluence or economic
activity per person. T is the environmental impact per unit of economic activity,
which is determined by the technology used for the production of goods and
services and by the social organization and culture that determine how the
technology is mobilized.

The IPAT identity summaries a general relation between human behavior
and its environmental impact. However, it can also be applied to a specific
environmental issue. For example, I may represent an aggregate environmental
indicator such as the amount of CO2 emission. In this particular case, A cor-
responds to a specific behavior or consumption per capita which is a cause for
the environmental impact represented by I. T stands for environmental impact
per unit of the consumption or behavior represented by A.

Although this model is simple and integrates myriad effects into a single
multiplier, it assumes a priori that the effects of P , A and T on I are strictly
proportional and independent, which is not necessarily true: Empirical data are
then used to find the exact formulation for each case. The following subsec-
tions present some applications of the IPAT model on specific environmental
problems.

2.1.1 General ASIF equation for transport impacts

The IEA developed the ASIF equation based on the IPAT model to cover trans-
port impacts [5]:

G =
∑

i

A · Si · Ii ·
∑

j

Fi,j

where G is the emission of any pollutant summed over sources (modes) i; A is
total travel activity, in passenger kilometers (or ton-km for freight), across all
modes. S converts from total passenger (or freight) travel to vehicle travel by
mode. I is the energy intensity of each mode (in fuel/passenger or tonne-km),
and is related to the inverse of the actual efficiency of the vehicle, but it also
depends on vehicle weight, power, and of course driver behavior and traffic. F

is the fuel type j in mode i. In this model, the size of the population is present
into the total travel activity A.
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2.1.2 IPAT model for CO2 emissions

In the special case of CO2 emissions, the authors in [2] reformulated the model
(1) slightly by the following:

I = aP bAce (2)

Here, I, P, and A remain, respectively, environmental impact, population, and
affluence. The quantities a, b, c, and e can be estimated by applying stan-
dard statistical techniques. The coefficients b and c determine the net effect of
population and affluence on impact, and a is a constant that scales the model.
Technology is modeled as a residual term e. Their results show that the im-
pact of population is roughly proportional to its size: This confirms the IPAT
model and contradicts the views of those who are complacent about population
growth. Furthermore, the coefficient b was estimated by 1,15, leading to an
almost linear behavior of I regarding the population size P .

The author in [6] used this linear behavior to study the amount of carbon
dioxide emission from car travel by an I = PAT type decomposition equation,
where the amount of the CO2 emission is determined by population, car trip
distance per person, occupancy rate, fuel efficiency, fuel structure and CO2

intensity of fuel.

2.2 Pollution cost per person

The above analysis shows that the cost per polluter has almost a linear behavior.
If D is the number of oil car owners, the total cost of emissions is calculated by
the IPAT model by:

Total Cost ≈ Emission level · Cost per tonne = (D.A.T ) · (k) = k.(A.T ).D

The pollution cost per polluter is then calculated by:

Cost per polluter = k.(A.T ) (3)

which is independent from the number of car owners D.

2.3 How to finance the projects using IPAT model?

Using the above-defined IPAT model, we are able to determine the real cost of
the pollution. Taxation policies are then necessary in order to apply the principle
called ”polluter pays”. The value calculated in Eqn. (3) is then transformed
to taxes that polluters pay. This may include residential taxes (applied to the
whole of the population) in the case of public transport, or taxes on oil or cars
in the case of hydrogen infrastructure investment.
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3 Sources of uncertainties

3.1 Uncertainty related to cost

In this work, we consider that the investment cost will decrease because of
external, worldwide research and development (R&D) efforts in universities,
government laboratories and companies. This corresponds for example to the
case where the project consists of using hydrogen fuel [1]. This technological
change cost is an exogenous process which can be modeled by the following
jump process:

dCt = −ΦCtdq

where dq = 1 with probability 1 − λ and dq = 0 with probability λ. For all
t > 0, we note Ct the investment cost at time t, and Ct ≥ Cmin = (1 − Φ)MC0

and Φ is a positive constant. M is the maximum number of downward states
(the maximum times that the cost could go downward).

3.2 Uncertainty related to demand

Let we consider that Dt is growing stochastically according to :

Dt = D0(K + (1 − K)e−µt)e−
σ
2

2
t+σBt X0 = x (4)

where µ, K and σ are strictly positive constants. We will call this kind of
stochastic processes concave brownian motion (CBM).

The choice of this expression for the demand is not arbitrary, as our aim was
to have a model where demand does not grows exponentially, but has a concave
behavior. If D0 is the population at t = 0, K can interpreted as a fraction of
how much the population will be at long term. σ is the volatility parameter, and
Bt is a standard brownian motion with zero mean and

√
t standard deviation.

The term e−
σ
2

2
t was added in order to have

ED0
[Dt] = D0(K + (1 − K)e−µt)

When t → ∞, ED0
[Dt] → D0K. This is illustrated in Figure 1.

Using Itô calculations, we obtain:

dDt = µ(t)Dt + σDtdBt (5)

where

µ(t) =
−µ(1 − K)e−µt

K + (1 − K)e−µt
(6)
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Figure 1: Examples of the demand growth (σ = 0.24,µ = 0.024 and K = 10)

4 Decision tree analysis

4.1 Why using real options

We suppose that the agency disposes of an opportunity to invest in such a sus-
tainable project during a certain time T . Hence the agency has the opportunity
to invest at any time or to delay the investment until T . The decision to build
such a project is irreversible and its infrastructure can not be used for any other
purpose [7].

The objective of the public agency being to decrease the air pollution by
constructing a sustainable transportation system, the classical decision method
based on cost-benefit (Discount Cash Flow DCF) analysis is not suitable for the
following reasons:

1. There are two sources of uncertainty: The cost of the project per city de-
mander decreases stochastically over time, and the demand grows stochas-
tically. DCF ignores the possibility of waiting for a better situation, and
leads to values that do not exploit the option ”invest now or later”, whereas
the real options method deals with the uncertainty about the future re-
turns in a flexible way.

2. As detailed in [7], the uncertainty increases the firm’s opportunity costs
of investment and raises the threshold rate of return required to induce
the firm to forgo its option to defer investment.

3. In contrast with the real options method, the DCF one ignores that the
investment can be completely or partially irreversible and, in our case, the
investment can be considered as completely irreversible. This assumption
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of complete irreversibility is not very realistic, but the reversible part of
such investment is negligible compared to the initial cost.

4. The analogy between the agency’s opportunity to invest in a sustainable
project and the holding of a financial call option argues for a real options
approach. In fact, the firm has the right but not the obligation to buy an
asset (the project) at a future, pre-determined time, at an exercise price
(the total cost C, uncertain in our case).

We will apply then a real options approach to answer the following important
question: until when is it preferable to delay the investment and how much is
the value of this opportunity (option to defer)?

4.2 Dynamic programming approach

To evaluate this option we will use the dynamic programming technique (deci-
sion tree analysis). We recall that it consists in dividing the problem into two
binary decisions: The immediate one and its generated value and the delaying
one and its continuation value, at the end of the period T . Then by moving
backward, and by repeating the same binary decision, we obtain the expected
optimal time which lies in an expected interval in which the investment should
be undertaken.

4.3 Utility of a polluter

Note that we are interested by the utility of a demander of the unsustainable
transport, because the policy of internalization consists of billing polluters for
the pollution they generate.

We consider the utility of a representative consumer (supposed neutral to
risk):

U(c) = c (7)

Let us now calculate the budget constraint of this representative polluter.
The total cost caused by the unsustainable transport activities is given by
IPAT’s formula as described above. The budget constraint, consumption per
head is then equal to:

c = m − α0 (8)

So, we have the following indirect utility function

V0 = U(c) = m − α0 (9)

where m is the income per person per unit of time and α1 = k.(A.T ).
We suppose that the new project will result in lowering the pollution cost

coefficient α from α0 to α1 where α0 > α1. If the total project cost is C is
annualized over an infinite horizon, and shared equally among transport users.
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The cost of the project per user per unit of time is then equal to ρC
D

, ρ being
the discount rate, and D the number of transport users.

Once the project is under way, the budget constraint of a demander becomes

c + α1 = m − ρC

Dt

From this new budget constraint, we can derive a new indirect utility func-
tion:

V1(Dt) = c = m − α1 −
ρC

Dt

(10)

4.4 Net utility gain

If the public agency invests at time t, the net utility gain evaluated at t with
an investment cost of Cm (1 < m ≤ M) and a demand of dt which is one of the
realizations at time t of the process Dt is:

NU(dt, Cm) = Edt
(

∫ ∞

t

e−ρ(s−t)Ds[V1(Ds, Cm) − V0(Ds)].ds) (11)

where V0 = U(c) = m − α0 and V1(Ds, Cm) = m − α1 − ρCm

Ds

. This gives

NU(dt, Cm) = Edt
(

∫ ∞

t

e−ρ(s−t)[(α0 − α1)Ds − ρCm].ds) (12)

NU(t, dt, Cm) = (
dt(α0 − α1)

K + (1 − K)e−µt
)(

K

ρ
+

(1 − K)e−µt

µ + ρ
) − Cm (13)

Using the fact that:

Edt
(Ds)) = dt(

(K + (1 − K)e−µs)

(K + (1 − K)e−µt)

The problem we face when calculating the net utility gain at time t is that
we only know the value of the demand at time t = 0 (X0 = x), its value at t

being a random value. To calculate the net utility gain at time t, we must then
explore all the possible values of the population at time t.

We begin by performing Monte Carlo simulations to explore the space of
possible values at each time t. We then define the interval [dmin, dmax] that
includes most of the possible values (say 99%) of the population. We divide this
interval into N subintervals, with subinterval i ∈ [1, N ] defined by:

[S1(i) = dmin + (i − 1)
dmax − dmin

N
, S2(i) = dmin + i

dmax − dmin

N
]

Note that we choose a large N so that subintervals are small, each subinterval
represents a possible state and we can represent subinterval i by the value S̄(i) =
S1(i)+S2(i)

2 . We then define N values of the net utility gain at time t by:

NU(t, i, m) = (
S̄(i)(α0 − α1)

K + (1 − K)e−µt
)(

K

ρ
+

(1 − K)e−µt

µ + ρ
) − Cm (14)
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4.5 Transition probabilities for the demand

The probability that, knowing that the demand is in interval i at time t, it will
move to interval j at time t + 1, is calculated by:

pi,j(t) ≈ Pr[Dt+1 ∈ [S1(j), S2(j)]|Dt = S̄(i)]

Using the formula:

dDt = µ(t)Dt + σDtdBt

with dBt =
√

dtN(0, 1), dt = 1. This gives

pi,j(t) = Pr[N(0, 1) ∈ [
1

σS̄i

√
dt

(S1(j) − S̄i − µ(t)S̄i),
1

σS̄i

√
dt

(S2(j) − S̄i − µ(t)S̄i)]]

Note that this can be expressed by the function erfc(a) = 2√
π

∫ ∞
a

e−x2

dx:

pd
i,j(t) =

1

2
[erfc(

1

σS̄i

√
2dt

(S1(j) − S̄i − µ(t)S̄i))

−erfc(
1

σS̄i

√
2dt

(S2(j) − S̄i − µ(t)S̄i))]

Furthermore, the probability that the corresponding state of the demand at
time t is i, is calculated by the following algorithm:

1. at t = 0:

P d(0, i) =

{

1 if i =
⌊

N(d0−dmin)
dmax−dmin

⌋

+ 1

0 otherwise

⌊y⌋ being the largest integer less than y.

2. at t > 0 and for all state number j,

P d(t, j) =

N
∑

i=1

P d(t − 1, i)pd
i,j(t − 1)

4.6 Decision algorithm

Let O(T, m, i) = max[NU(t, i, m), 0] be the option value at time T if the invest-
ment cost is Cm and if the demand in the ith interval. At time T , the agency
has two alternatives choices: Invest and get NU(T, i, m) or never invest and get
0. By moving back one period, it gets:

O(T − 1, i, m) =

max[NU(T − 1, i, m),

∑N

j=1 pd
i,j(T − 1) × [λO(T, j, m) + (1 − λ)O(T, j, m + 1)]

1 + ρ
]
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At a time t < T , the agency has also two alternatives choices: Invest now
and get NU(t, i, m) or wait one period and then decide. At the next period, the
investment cost will decrease with probability 1 − λ or remain the same with
probability λ. We should then take the expected value of the option to wait
actualized at time t. Let we denote that:

W (t, i, m) =

∑N

j=1 pd
i,j(t) × [λO(t + 1, j, m) + (1 − λ)O(t + 1, j, m + 1)]

1 + ρ

More precisely, we can write the following algorithm:

• Start at the maturity date T at which a now or never decision should be
undertaken.

• at t = T the option is calculated as O(T, i, m) = max[NU(T, i, m), 0] for
all 0 < m ≤ M and i ∈ [1, N ].

• move back one period to t = T − 1 and calculate

O(T − 1, i, m) = max[NU(T − 1, i, m), W (T, i, m)]

• move back one period and compute O(T − 2, i, m), and so on until calcu-
lating O(0, i, m).

• The first time t such that NU(t−1, i, m) > W (t−1, i, m) and correspond-
ing to a non-zero probability is then the optimal time to invest with Cm

and with level of demand falls in state i. This happens when the value of
the immediate investment is higher than the expected value of option to
wait for this value of the investment cost and this level of demand.

4.7 Expected time to invest

We begin by introducing some definitions. A each time t, let d(t) be the state
of the demand and c(t) be the state of the cost. Let us also define the following
function:

G(t, i, m) = NU(t, i, m) − O(t, i, m) (15)

The event Aτ=”Investment occurred exactly at time τ” is equivalent to:
Bτ =”Investment did not happened before τ” and Hτ=”Demand at τ is high
enough to invest and the cost of the project low enough”. Note that we mean by
the sentence: ”Demand is high enough and the cost of the project low enough
at time τ” that Dτ and Cτ authorize the investment, i.e. NU(τ, i, Cm) >

W (τ, i, m) or G(τ, d(τ), c(τ)) > 0.

Pr[Aτ ] = Pr[Bτ ∩ Hτ ] = Pr[Hτ |Bτ ] × Pr[Bτ ]

The event Bτ is equivalent to: ”Demand was not sufficient and cost was high
for all t < τ”:

Pr[Hτ |Bτ ] = Pr[G(τ, d(τ), c(τ)) ≥ 0|G(t, d(t), c(t)) < 0∀t < τ ]
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As the state of the system follows a Markov chain, this is equivalent to:

Pr[Hτ |Bτ ] = Pr[G(τ, d(τ), c(τ)) ≥ 0|G(τ − 1, d(τ − 1), c(τ − 1)) < 0]

=

∑

(i,m):G(τ−1,i,m)<0 P (τ − 1, i, m)
∑

(j,l):G(τ,j,l)≥0 pi,j,m,l(τ − 1)
∑

(i,m):G(τ−1,i,m)<0 P (τ − 1, i, m)
(16)

where pi,j,m,l(t) is the probability of changing the state from (i, m) to (j, l) at
time t, given by:

pi,j,m,l(t) = pd
i,j(t) ×







λ if l = m

1 − λ l = m + 1
0 otherwise

and P (t, i, m) is the probability that, at time t, the state is equal to (i, m):

P (t, i, m) = P d(t, i) × P c(t, m)

(for P c(t, m) see section ??).
Having obtained Pr(Hτ |Bτ ), we now return to the probability of event Bτ .

It is calculated as follows:

Pr[Bτ ] = Pr[G(t, d(t), c(t)) < 0, ∀t < τ ]

= Pr[G(τ − 1), d(τ − 1), c(τ − 1)) < 0|G(t, d(t), c(t)) < 0, ∀t < τ − 1]

×Pr[G(t, d(t), c(t)) < 0, ∀t < τ − 1]

This is equivalent to:

Pr[Bτ ] = Pr[H̄τ−1|Bτ−1] × Pr[Bτ−1] = (1 − Pr[Hτ−1|Bτ−1]) × Pr[Bτ−1]

where H̄ =”Population and cost are not sufficient at τ − 1 ”
This gives:

Pr[Bτ ] = Pr[Btmin
] ×

τ−1
∏

t=tmin

(1 − Pr[Ht|Bt])

where tmin is the first time at which investment is possible. As, by definition,
Pr[Btmin

] = 1, then:

Pr[Bτ ] =

τ−1
∏

t=tmin

(1 − Pr[Ht|Bt]) (17)

We propose then to use the following iterative algorithm in order to obtain
the expected waiting time:

1. Begin at time tmin:

Pr[Atmin
] = Pr[Htmin

|Btmin
] =

N
∑

(i,m):G(tmin,i,m)≥0

P (tmin, i, m)

11



2. For all t > tmin, calculate Pr[Ht|Bt] using Eqn.(16), and Pr[Bt].

3. Beginning from tmin + 1 and incrementing the time until T , calculate:

Pr[At] = Pr[Ht|Bt]Pr[Bt]

4. The expected waiting time is calculated using:

w̄ =
∑

t≥tmin

Pr[At] × t

4.8 Numerical applications

In this section, we examine the characteristics of the expected waiting time
developed in the previous section and show how it depends on the values of the
various parameters. Some numerical solutions will help to illustrate the results.

Figure 2 plots the expected waiting time as a function of the volatility. We
can see that as the volatility increases we should wait more before investing.
The volatility increases thus the waiting option value so that investing decision
becomes more valuable under higher uncertainty.

In Figure 3, we can see that, as before, when the probability that the cost de-
creases each month increases, investment occurs sooner, as the cost will become
rapidly low.

Finally, Figure 4 shows the expected waiting time as a function of interest
rate ρ: The higher the interest rate the higher the annuity per person for the
same level of population and total cost project which is shared equally between
the people.
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Figure 2: Expected waiting time function of the volatility (λ = 0.99%,γ(1) =
3 ∗ 109, x0 = 120000, K = 2, ρ = 7%, Φ = 0.05)
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Figure 3: Expected waiting time function of the probability that the cost de-
creases (σ = 0.36%,γ(1) = 3 × 109, x0 = 120000, K = 2, ρ = 7%, Φ = 0.05).

5 Remark about the upgrading cost

In Section 4.3, we considered a utility function, after the investment, of the
form:

V1(Dt) = c = m − α1 −
ρC

Dt

,

supposing that the cost of the project is divided over all demanders ρC
Dt

. This
corresponds to a hydrogen infrastructure construction, where everybody must
contribute to the project through taxes. However, a transition to a hydrogen
transport involves also substituting the oil motor by a hydrogen motor, with
a certain cost Mt that is paid entirely by the polluter. The utility function
becomes then:

V1(Dt) = c = m − α1 − ρM − ρC

Dt

(18)

M may also decrease stochastically with time (M = Mt), adding another
source of uncertainty for the decision. This can be described, as for the infras-
tructure cost, by the following:

dMt = −ΞMtdq

where dq = 1 with probability 1 − δ and dq = 0 with probability δ.
The decision algorithm depends then on three random variables: The de-

mand Dt, the motor cost Mt, and the infrastructure cost Ct. The net utility
gain is then:

NU(t, Si, Cm, Mk) = (
S̄(i)(α0 − α1 − ρMk)

K + (1 − K)e−µt
)(

K

ρ
+

(1 − K)e−µt

µ + ρ
)−Cm(19)
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Figure 4: Expected waiting time function of the interest rate (σ = 0.36%,γ(1) =
3 × 109, x0 = 120000, K = 2, λ = 0.99, Φ = 0.05)

An backward algorithm, similar to that developed in Section 4.6, can be
introduced with the additional random variable, and the expected waiting time
can be obtained.

6 Conclusion

In the problem of investing in hydrogen fuel infrastructure, the effect of uncer-
tainty is generally ambiguous because it affects both the benefits and the costs:
Investing decreases pollution while waiting decreases project costs. We then
used in this paper the real options method that is the most adapted decision-
taking tool when uncertainty is high. We utilized of a dynamic programming
approach when the investment is subject to two sources of uncertainty: Demand-
growth and project-cost uncertainties. We determined, for each configuration
corresponding to a demand level and a project cost, whether it is better to in-
vest immediately or to delay the investment. We also calculated, for the case
where delaying the investment is better, the expected waiting time before we
can undertake the project construction.
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