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We apply a utility–based method to obtain the value of a finite–time investment opportunity when the

underlying real asset is not perfectly correlated to a traded financial asset. Using a discrete–time algorithm

to calculate the indifference price for this type of real option, we present numerical examples for the corre-

sponding investment thresholds, in particular highlighting their dependence on correlation and risk aversion.
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1. Introduction

Most of the standard literature in real options is based on one or both of the following unrealistic

assumptions: (1) that the time horizon for the problem at hand is infinite and (2) that the real

asset under consideration is perfectly correlated to a traded financial asset. The infinite–maturity

hypothesis helps to reduce the dimensionality of the problem by removing its dependence on time,

therefore concentrating on stationary solutions only. The spanning asset hypothesis allows the

introduction of useful replication arguments developed for derivative pricing in complete markets.

Together they led to the development of a coherent and intuitive approach for investment under

uncertainty, well–represented for instance in Dixit and Pindyck (1994), where the decisions to start,

abandon, reactivate and mothball a given project were reduced to the solution of systems of linear

equations.

Since then, several authors have dropped the artifice of an infinite maturity time, therefore

resourcing to numerical methods for dealing with the non-stationary valuation problem. These

include finite–difference methods for the associated partial differential equation and lattice methods

for discrete–time option pricing. However, even recent books such as Smit and Trigeorgis (2004)

carry the assumption that “real-options valuation is still applicable provided we can find a reliable
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estimate for the market value of the asset” (page 102), which is tantamount to saying that “markets

are sufficiently complete”. In reality, most investment problems where the real options approach

is deemed relevant occur in markets which are far from being complete. For example, almost by

definition an R&D investment decision concerns a product which is not currently commercialized

and therefore commands uncertainty that is at best imperfectly correlated with available financial

assets.

Exceptions to this adherence to a “near completion” assumption, but still in the context of an

infinite time horizon, are Hugonnier and Morellec (2005) and Henderson (2005). In the first paper, a

risk–averse manager facing an investment decision tries to maximize his expected utility considering

the effect that shareholders’ external control will have on his personal wealth. By assuming that

the underlying project is subject to both market risk, which the manager can hedge using a traded

financial asset, and idiosyncratic risk, which cannot be hedged in the available financial market,

the authors reduce this decision to an investment problem in an incomplete market. By contrast,

under a similar model for a project with both market and idiosyncratic risks, Henderson (2005)

uses an exponential utility framework in order to actually calculate the value for the opportunity

to invest as a derivative in an incomplete market, therefore remaining closer in spirit to the real

options paradigm.

In this paper, we study a finite–horizon version of Henderson’s model. We first review the mech-

anism for pricing derivatives in incomplete markets using an exponential utility. In Section 2, we

explain the indifference pricing framework in the context of investment decisions in a simple one–

period binomial model. In section 3, we extend the valuation procedure to a multi–period model

used as an approximation for continuous–time markets. This is followed by numerical experiments

exploring the properties of the option to invest in section 4, including comparisons with the corre-

sponding infinite horizon and complete market limits. Section 5 then presents conclusions drawn

from the model, especially in contrast with alternative ways of dealing with market incompleteness

in the context of real options.
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2. Investment decisions in one period

Consider an investor who needs to decide whether to pay a sunk cost I for a project with current

value V0. Assume that such investment can be made either at time 0 or postponed until time T ,

when the project value might rise or fall according to specified probabilities. The opportunity to

invest is then formally equivalent to a discrete-time early-exercise call option with strike price I

having the project value as the underlying asset. When the project value is perfectly correlated

to the price of a traded financial asset, such option can be priced using standard arbitrage and

replication arguments. In the absence of such spanning asset, the option to invest becomes anal-

ogous to a derivative in an incomplete market. Instead of wishfully pretending that risk–neutral

and replication arguments can still be used in this case, we argue that the investor’s risk preference

should be explicitly used for valuing the option to invest. For this, we follow Hobson and Henderson

(2002) and consider a utility indifference framework based on an exponential utility of the form

U(x) =−e−γx.

Let us assume the existence of a riskless cash account with constant annualized interest rate r,

which we use as a fixed numeraire. Denote the discounted project value by V and the discounted

price of a correlated traded financial asset by S. We then specify their one–period dynamics by

(ST , VT ) =


(uS0, hV0) with probability p1,
(uS0, `V0) with probability p2,
(dS0, hV0) with probability p3,
(dS0, `V0) with probability p4,

(1)

where 0 < d < 1 < u and 0 < ` < 1 < h, for positive initial values S0, V0 and historical probabilities

p1, p2, p3, p4.

Without the opportunity to invest in the project V , a rational agent with initial wealth x will

keep an amount ξ in the cash account and hold H units of the traded asset S in such a way as to

maximize the expected utility of the terminal wealth

Xx
T = ξ +HST = x+H(ST −S0). (2)

That is, the investor will try to solve the optimization problem

u0(x) = max
H

E[U(Xx
T )] (3)
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Suppose next that the investor is offered the opportunity to invest in the project at the end of the

period, thereby receiving a discounted payoff CT = (VT − e−rT I)+. In order to acquire this option,

the investor must spend an amount of money π at time t = 0. For instance, π might be the price

of land that will allow a subsequent real estate development, or the price of a license to explore a

natural resource. The key assumption now is that, after obtaining the option, the investor will try

to use the financial market in such a way as to maximize the utility of the total terminal position.

In other words, an investor with initial wealth x who acquires the option for the price π will try

to solve the modified optimization problem

uC(x−π) = sup
h

E[U(Xx−π
T +CT )] (4)

Following Hodges and Neuberger (1989), we define the indifference price for the option to invest

in the final period as the amount πC that solves the equation

u0(x) = uC(x−π). (5)

Denoting the two possible pay-offs at the terminal time by Ch and C`, it is then a straightforward

calculation to show that, for an exponential utility, such indifference price is given by

πC = g(Ch,C`) (6)

where, for fixed parameters (u,d, p1, p2, p3, p4) the function g : R×R→R is given by

g(x1, x2) =
q

γ
log

(
p1 + p2

p1e−γx1 + p2e−γx2

)
+

1− q

γ
log

(
p3 + p4

p3e−γx1 + p4e−γx2

)
, (7)

with

q =
1− d

u− d
.

We will henceforth refer to πC as the continuation value for holding the option of investing at a

later time. If we now introduce the possibility of investment at time t = 0, it is clear that immediate

exercise of this option will occur whenever its exercise value (V0−I)+ is larger than its continuation

value πC . That is, from the point of view of this agent, the value at time zero for the opportunity

to invest in the project either at t = 0 or t = T is given by

C0 = max{(V0− I)+, g((hV0− e−rT I)+, (`V0− e−rT I)+)}.
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3. The multi-period model

Consider now a continuous-time two–factor market of the form

dSt = (µ1− r)Stdt +σ1StdW

dVt = (µ2− r)Vtdt +σ2Vt(ρdW +
√

1− ρ2dZ), (8)

where µ1, µ2σ1, σ2, r are constants and (W,Z) are standard independent Brownian motions under

the historical probability measure P . As before, St corresponds to the discounted price of a traded

financial asset which is correlated to the discounted value of the underlying project Vt with a

correlation parameter ρ.

An approximation for this market can be obtained by dividing the time interval [0, T ] into N

subintervals with equal time steps ∆t = T/N and taking the one–period dynamics for the discrete–

time processes (Sn, Vn) to be given by (1). We then need to choose the dynamic parameters u,d,h, `

and the one-period probabilities pi so that, in the limit of small ∆t, such dynamics match the

distributional properties of the continuous time processes St and Vt. For instance, one can verify

that, up to terms of order ∆t, the choices

u = eσ1
√

∆t, h = eσ2
√

∆t, (9)

d = e−σ1
√

∆t, ` = e−σ2
√

∆t, (10)

p1 + p2 =
e(µ1−r)∆t− d

u− d
, (11)

p1 + p3 =
e(µ2−r)∆t− `

h− `
(12)

ρσ1σ2∆t = (u− d)(h− `)[p1p4− p2p3], (13)

provide the correct variances, means and correlation for St and Vt. Supplemented by the condition

p1 + p2 + p3 + p4 = 1, (14)

these equations uniquely determine the historical probabilities pi.

Having fixed these parameters, let us choose a sufficiently large integer M and denote

V (i) = hM+1−iV0, i = 1, . . . ,2M +1. (15)
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These values range from (hMV0) to (`MV0), respectively the highest and lowest achievable dis-

counted project values starting from the middle point V0 with the multiplicative parameter h =

`−1 > 1. In practice, M should be chosen so that the highest and lowest values are comfortably

beyond the range of project values that can be reached during the time interval [0, T ] with rea-

sonable probabilities (for instance, returns which are away from their mean by more than four

standard deviations). Each realization for the discrete-time process Vn following the dynamics (1)

can then be thought of as a path over a (2M + 1)×N rectangular grid having the values (15) as

its repeated columns.

The discounted value of the option to invest on the project can then be determined as a function

Ci,n on this grid, with the index i = 1, . . . ,2N +1 referring to the underlying project value V (i), and

the index n = 0, . . . ,N referring to time tn = n∆t. We start by specifying the following boundary

conditions:

Ci,N = (V (i)− e−rT I)+, i = 1, . . . ,2N +1, (16)

C1,n = V (1)− e−rn∆tI, n = 0, . . . ,N, (17)

C2N+1,n = 0, n = 0, . . . ,N. (18)

The terminal condition (16) corresponds to the fact that at maturity the option to invest should

be exercised whenever the project value exceeds the investment cost. The top boundary condition

(17) means that such option should always be exercised when the project value is at its highest.

The bottom boundary condition (18) corresponds to the fact that the option is worthless when

the project is at its lowest. The values in the interior of the grid are then obtained by backward

induction as follows:

Ci,n = max
{
(V (i)− e−rn∆tI)+, g(Ci+1,n+1,Ci−1,n+1)

}
,

n = N − 1, . . . ,0
i = 2, . . . ,2N.

(19)

That is, at each node on the grid, the investor chooses between exercising the investment option,

obtaining its immediate exercise value V (i)−e−rn∆tI, or holding the option one step into the future,

retaining its continuation value g(Ci+1,n+1,Ci−1,n+1).
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Accordingly, at each time tn, the exercise threshold V ∗
n is defined as the project value for which

the exercise value for the option becomes higher than its continuation value. For project values

below V ∗
n , the investor will prefer to hold the option, while for project values higher than such

threshold, preference for immediate exercise will prevail.

4. Numerical Experiments

We now implement the backwards recursive algorithm described in the previous section and inves-

tigate how the exercise threshold, and consequently the value of the option to invest, varies with

different model parameters. In what follows, unless explicitly indicated, we fix the investment cost

I = 1, the risk–free interest r = 0.04, the time–to–maturity T = 10, the dynamic parameters for the

traded asset µ1 = 0.115, σ1 = 0.25, S0 = 1 and the volatility for the project σ2 = 0.2. Given these

parameters, the CAPM equilibrium expected rate of return on the project for a given correlation

ρ is

µ̄2 = r + ρ

(
µ1− r

σ1

)
σ2. (20)

The difference δ = µ̄2 − µ2, known as the below–equilibrium rate–of–return shortfall, should then

be interpreted as the incomplete market analogue of a dividend rate paid by the project, which we

fix at δ = 0.04.

Because incompleteness is the main theme of this paper, we start with the dependence on cor-

relation. Observe first that the limits ρ→±1 in our model correspond to a complete market, since

options on the underlying asset V can then be perfectly replicated by trading in the asset S. In the

complete market case, the investment threshold can be obtained in closed-form in the limit of an

infinite time horizon. For the parameters above, such formula gives V ∗
DP = 2 (see page 153 in Dixit

and Pindyck (1994)). By contrast, the investment threshold obtained from a simple NPV criterion

(that is, invest whenever the net present value for the project is positive) in this case is equal

to V ∗
NPV = 1. This constitutes the most widespread result from real option theory: irreversibility

and time flexibility lead to investors waiting until much larger thresholds before committing to an

investment decision. In the left panel of figure 1 we see what reservations need to be made in the
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presence of market incompleteness. Predictably, the exercise thresholds decrease as we move away

from ρ = ±1, meaning that the presence of unhedged risks decreases the value of the option to

invest. Interestingly however, even at its minimum, corresponding to ρ = 0, the investment thresh-

old is still higher than suggested by NPV. That is, even when the risk in the project is entirely

idiosyncratic and therefore cannot be hedged with financial assets, time flexibility still confers an

option value to the opportunity to invest which is higher than its net present value, irrespectively

of any replication argument.
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Figure 1 Exercise threshold as a function of correlation and risk aversion.

Moving to the dependence with risk–aversion, in an equilibrium context and still in the infinite

time horizon setup, McDonald and Siegel (1986) obtain the exercise threshold by assuming that

investors require compensation for market risks whilst being risk–neutral towards idiosyncratic

risk. As observed in Henderson (2005), this corresponds to the limit γ→ 0 in an exponential utility

framework. For the parameters above, with the adjustment for market risks done according to

CAPM, this threshold coincides with the value V ∗ = 2 of Dixit and Pindyck (1994). We can observe

this limiting behavior in the right panel of figure 1, together with the fact that the investment

threshold for our model expectedly decreases as a function of the parameter γ. That is, risk–aversion
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can significantly erode the option value obtained from time flexibility. In the limit γ→∞, one can

explicitly show that expression (7) tends to the subhedge price of the derivative, which is zero for

a call option, so that thew value for the investment opportunity reduces to its net present value,

with the corresponding investment threshold V ∗
NPV = 1. As we observe in the graph, this erosion of

value with risk aversion is faster for lower correlations between the project and the traded asset.

As with classical real options, we can verify in our model that heightened uncertainty in project

values increases the value of time flexibility, which is reflected in the increasing threshold with

respect to the volatility σ2 observed in the left panel of figure 2. In the same figure, we observe how

the threshold decreases as a function of δ, implying that the incentives for immediate investment

in the project are higher the more its rate of return falls below its equilibrium value. This happens

because δ is the incomplete market analogue of a dividend rate paid by the project, implying that

there is more investment when dividends are higher.
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Figure 2 Exercise threshold as a function of volatility and dividend rate.

All of these features were already present in the elegant closed-form solution obtained in Hen-

derson (2005) for the infinite time horizon limit and under the somewhat artificial restriction that



Author: Getting real with Real Options
10 Article submitted to Management Science; manuscript no. MS-0001-1922.65

the investment cost should grow at a rate α = r. Our contributions consist first in removing this

restriction (our investment cost can grow at any rate, in particular at a rate α = 0 as above) and

secondly in numerically calculating the exercise threshold as a function of time–to–maturity. In

figure 3 we see that the exercise threshold can take a long time to converge to its asymptotic value,

particularly in the desirable cases of low risk–aversion and high–correlation, indicating that for

typical maturities of only a couple of years the stationary solution provides a poor approximation

for its finite–horizon counterpart.

0 10 20 30 40 50
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

time to maturity

th
re

s
h
o
ld

Low risk aversion !=0.5

 

 

"=0

"=0.6

"=0.9

0 10 20 30 40 50
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

time to maturity

th
re

s
h
o
ld

Higher risk aversion !=4

 

 

"=0

"=0.6

"=0.9

Figure 3 Exercise threshold as a function of time to maturity.

We conclude this section with a graph of the option value as a function of the current level

of the underlying project. These should be compared with either figure 5.3 on page 154 of Dixit

and Pindyck (1994) or figure 2 of Henderson (2005), which use the same base parameters as ours,

except for time–to–maturity, which we take to be T = 10. We can observe once more that higher

correlations lead to higher option values. Moreover, we confirm our previous observation that even

for ρ = 0 the opportunity to invest is more valuable than its net present value, represented in the

graph by the solid line depicting the function (V −I)+. Finally, notice how the smooth pasting and
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matching conditions, which were not a priori assumed in our model, are satisfied by the option

values, in the sense that the curves in figure 4 smoothly match the function (V − I)+ at the

corresponding exercise thresholds, marked in the graph by the two vertical dotted lines.
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Figure 4 Option value as a function of underlying project value. The threshold for ρ = 0 is 1.1972 and the one

for ρ = 0.99 is 1.7507.

In all of the numerical experiments above, we used a fixed time step ∆t = 1/900, so that the

relative precision for project values on the grid is of the order σ2

√
∆t ∼ 0.0067. For each point

marked in the pictures above, the thresholds and option values were obtained on a typical 1000×

9000 grid in approximately 15 seconds using a desktop PC at 3MHz.
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5. Discussion

We have proposed a multi–period binomial model for assessing the value of an option to invest on

a project in a finite time horizon in the absence of a perfectly spanning financial asset. The exercise

thresholds obtained from our model exhibit the expected dependence with respect to correlation,

uncertainty, risk aversion, dividend rates and time to maturity. In particular, for perfectly correlated

or perfectly anti–correlated assets the threshold approaches that of a complete market, whereas

when the aversion to idiosyncratic risks tends to zero, the threshold approaches the one obtained

under similar assumptions by McDonald and Siegel (1986). Moreover, we verify that even in the zero

correlation case, whereby none of the risk in the project can be hedged in a financial market, the

paradigm of real options can still be applied to value an investment decision, since the opportunity

to invest still carries an option value above its net present value. In other words, it is time flexibility

itself, more than the possibility of replication, that is the source of the extra value of an investment

opportunity. This value, however, erodes sharply at higher levels of risk aversion, and even more

so when the project is uncorrelated to financial markets.

Apart from the outright use of risk–neutral valuation even when markets are incomplete -

under the wishful assumption that they are complete enough for all practical purposes - the most

widespread alternative method for dealing with incompleteness in a real options context is through

the use of dynamic programming with an exogenous discount rate. This is the approach indicated,

for instance, in the second half of chapter 5 in Dixit and Pindyck (1994), in which an investor

equates the expected capital appreciation from a project to the expected rate of return on the

investment opportunity, using a corporate rate of return, which is different from the risk–free inter-

est rate and meant to express corporate risk preferences. Despite its popularity, such approach

has the serious theoretical drawback that the fully nonlinear risk preferences of a corporation can

hardly be expressed through a single discount factor. In fact, the majority of financial economics

literature use an expected utility function together with an exogenous discount factor in order

to model risk preferences (see for example Hugonnier and Morellec (2005) in the context of real

options and Jin and Glasserman (2001) in the context of equilibrium for interest rates). At a more
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practical level, this dynamic programming approach with a corporate discount rate obscures the

most important aspects of real options, namely the intuition that can be gained when managerial

decisions are treated as options. For example, under the option paradigm, investment on a multi-

stage project is analogous to a portfolio of early exercise options, each having its own value and

interacting in a complex manner towards the value of the whole project. Precisely because such

analogies are completely lost in the dynamic programming approach, authors such as Dixit and

Pindyck dropped it in the remaining of their book in favor of a contingent claim analysis, which

then formally relies back on the complete market framework with a spanning asset hypothesis.

In comparison, our proposed method handles incompleteness by explicitly introducing risk pref-

erences in an economically sound utility–based framework for the realistic case of a finite time

horizon, while retaining the computational complexity of a standard binomial valuation. The use

of risk preferences in the context of investment decisions appeared, for example, in earlier works of

Constantinides (1978) and Smith and Nau (1995), but restricted to the case of an European–style

decision to be made at a fixed expiration time. Our method, on the other hand, addresses the

problem of investment decisions that can be made at any intermediate time by modeling them as

early–exercise contingent claims in incomplete markets. In this respect, it presents an alternative

to the numerical methods proposed in Oberman and Zariphopoulou (2003), where the indifference

price of an early–exercise claim is computed as the viscosity solution to a nonlinear variational

inequality. Despite being simpler than the general numerical schemes proposed in Oberman and

Zariphopoulou (2003), our method can be easily extended to the case of several interconnected

options, therefore providing incomplete market versions for all the standard managerial decisions

treated as real options. For example, all the thresholds for investment, abandonment, suspension

and reactivation of a project in an incomplete market are obtained in the forthcoming paper by

Grasselli and Nitzan (2006). As an application in a different direction, a modification of the method

proposed here was used in Grasselli (2005) for the valuation of employee stock options. In this way,

our valuation method considerably enlarges the domain of applicability of both real options and

indifference pricing.
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In order to implement our valuation method for an investment decision, one needs to decide on

which risk aversion parameter γ to use. The implied risk aversion prevailing in the market can be

estimated in a variety of ways. In complete markets, they can be easily estimated from option data,

using the fact that the pricing kernel (or state price density) encodes information about the utility

function of a representative agent (see for example Jackwerth (2000)). For incomplete markets, the

methods need to be modified to account for the fact that a representative agent might not exist (see

for example Lioui and Malka (2004)). Such estimates, while providing a first approximation for the

risk aversion, might not be adequate to the needs of a particular company, since they reflect average

market views, rather than the company’s risk attitudes. Alternatively, decision makers within a

particular company could engage in a self–assessment exercise in oder to determine an appropriate

risk aversion parameter. In this respect, there is a large literature on how to determine risk aversion

from the results of surveys involving specified lotteries (see for example Kagel and Roth (1995)).

Ultimately, as with any other input parameter, such as the volatility of the project value, several

different estimates should be used in the valuation algorithm before a specific investment decision

is made. Armed with the sensitivity analysis provided by the type of graphs presented in Section

4, a manager can then make well–informed decisions within several alternative scenarios.
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