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GENERALIZED REAL RENOVATION OPTIONS 

 

Introduction 
 

Not all assets improve with age.1  An important property development segment involves 

renovation, or upgrading the quality of a deteriorated facility, although most property 

development real option models assume construction from vacant land, or redevelopment 

of an existing structure, or sequential demolition and reconstruction2.  We extend the 

current literature of real property redevelopment to the generalised case of fixed and 

variable investment cost, and cover asset renovation and refurbishment.  We also 

demonstrate an easy way to solve models involving several variables, and explore the use 

of transformations in reducing model dimensionality. 

 
                                                 
1 Excepts being certain vintages of port, some types of art, and possibly some professors of finance. 
2 The extension of Samuelson (1965) to a real land development option in Geltner & Miller (2001), as 
developed into multi-factor models in Williams (1991), and Patel & Paxson (1998) are examples of the first 
type; Williams (1997) is an example of the second type; and Paxson (2007) is an example of the third type.  
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Real property assets possesses the feature that their quality or efficiency to capture rents 

deteriorates continuously over time owing to usage and consequently, they demand from 

time to time quality enhancement investments to raise their quality to a more viable level. 

Real property redevelopment occurs when the necessary investment to increasing its 

prevailing quality level from a threshold bound is adequately compensated by the 

incremental net rental income earned from the quality enhancement. By treating the net 

renal income as the product of an exogenous market rental price net of unit costs and 

asset quality that deteriorates deterministically over time, Williams (1997) develops a real 

options model for investigating the optimal threshold and redevelopment quality levels, 

instantaneously before and after the investment, through adopting a Cobb-Douglas 

function to represent the investment cost behaviour, which depends on those two quality 

levels. A comparison is conducted on the effect of multiple redevelopment opportunities 

versus a single redevelopment opportunity during the asset lifetime that reveals a 

widening of the threshold and redevelopment quality levels as the number of 

opportunities drops from multiple to one. In common with other real option analyses in 

the related field of asset replacement, Ye (1990), Mauer & Ott (1995), and Dobbs (2004), 

the effect of volatility increases is to lower the threshold level signalling the re-

investment. This suggests that property redevelopment is similar to equipment 

replacement in demanding greater patience on when to optimally re-invest. Further, 

because Williams (1997) models both the threshold and redevelopment levels, he also 

finds that increasing uncertainty lowers the quality level following the redevelopment. 

 

From the perspective of model design,  the key advantages of the model as formulated by 

Williams (1997) are the inclusion of a variable investment cost and the development of a 

variable transformation used for deriving the solution to the two dimensional partial 

differential equation representing the fundamental valuation relationship. These features 

can be usefully applied to valuation in alternative contexts where asset quality 

deterioration rates or quantity depletion rates can be taken to be constant. The two model 

features of a variable investment cost and the transformation to reduce model 

dimensionality are intrinsically intertwined. Relaxing the investment cost formulation to 

include a fixed cost element as well as the existing variable element violates the 
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conditions underpinning the transformation’s viability. Generalising the model to include 

costs that are independent of the threshold and redevelopment quality levels, such as 

refurbishment fees and levies or the loss of business due to the disruption, means 

sacrificing his solution methodology and creating an alternative method. The primary aim 

of this paper is to revisit the Williams (1997) solution methodology and to formulate an 

alternative way of generating a generalised solution without recourse to numerical 

solution techniques, which yields his results as a derivative case. 

 

The solution method adopted here is quasi-analytic in the sense that the solution values 

have to be determined numerically from a small set of simultaneous non-linear 

relationships since no explicit solution exists. When analytical methods fail, the recourse 

is to use of  a purely numerical solution technique, Brennan & Schwartz (1978), Geske & 

Shastri (1985), Boyle (1988), and Cortazar (2001), which is applied by Childs, 

Riddiough, & Triantis (1996) to solve a two dimensional partial differential equation in 

the context of mix use redevelopment. Although inferior to the explicit solution, the 

quasi-analytic approach has the advantage of providing a framework from which key 

derivatives such as “vega” can be derived analytically. Further, since numerical solution 

techniques have normally to be benchmarked against an analytical solution for a simpler 

problem to test their efficacy, these techniques rely on the existence of analytical 

solutions. 

 

By extending the scope of the model to consider fixed and variable investment cost, the 

quasi-analytical method unearths potentially latent properties of the solution. The real 

options result that the value of an investment opportunity has to exceed its cost by a 

mark-up factor, S. Majd & R. S. Pindyck (1987), McDonald & Siegel (1986), Williams 

(1991), is replicated for asset redevelopment. It is established from the generalised model 

that the incremental net rental income generated from enhancing asset quality has to 

exceed the investment cost of effecting that enhancement by a similar mark-up factor. In 

addition to the usual requirement that the risk-free rate has to exceed the net trend rate of 

net rental price, it is established that this has to be augmented by extra conditions to 

ensure solution stability and the avoidance of bizarre results. These extra conditions, 
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which are derived from the requirement imposed by considering asset quality, require 

that the range of the risk-free rate is limited by the value of the net rental price volatility. 

Outside of these bounds, the asset value including the redevelopment option becomes 

unstable. This suggests that the formulation of the investment cost function imposes more 

limitations on the scope of parametric values than originally envisaged. Finally, since the 

quasi-analytical method has the versatility for dealing with partial differential equations 

of order two, the model is extended in its treatment of variables by allowing asset quality 

as well as net rental price to be stochastic. Even for this enlarged model, it is shown that 

similar restrictions on the scope of parametric values apply. 

 

The paper is organised as follows. The first section presents the fixed and variable 

investment renovation model and develops the quasi-analytical approach to generating 

the solution composed of four simultaneous non-linear equations. Both the cases of a 

single and multiple renovation options are considered.  The equivalence between the 

current solution for a zero fixed cost element and the Williams (1997) solution is 

explained in the Appendix. The next section considers the numerical results. The 

following two sections adapt the basic model first by treating the investment cost as 

having only a fixed element and secondly by extending the model to include two 

stochastic variables. The penultimate section examines the effect of the renovation option 

on the original decision to build. The final section is a conclusion. 

 

Real Renovation Options with Fixed and Variable Investment Costs 
 
A firm owning a real property asset is considering whether or not to redevelop the asset 

in order to raise its current possibly inferior quality to a superior level. Any quality 

increase is reflected in incremental future net cash flows generated by the asset but at the 

sacrifice of the redevelopment investment cost. At each instant of time, the real property 

asset creates a flow of rental services and generates a cash flow that depends on its 

quality and the relevant market rental price. A rental service unit is characterised by its 

current asset quality q  measured per unit of time, and its rental price p , defined as net of 

current operating and maintenance costs, is also measured per unit of time. Both asset 
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quality and rental price change through time but not in the same way. Rental price is 

taken to evolve stochastically whereas the change in quality is deterministic. Collectively, 

the asset quality and the rental price determine the asset net rental income x pq=  per unit 

of time. 

 

Market price evolution is taken to follow the geometric Brownian process with drift: 

 q pdp pdt pdZ= α + σ . (1) 

In (1), the constant α  represents the rental price’s mean growth rate per unit of time and 

the constant pσ  its standard deviation per unit of time, and pZ  denotes the standard 

Wiener random variable. 

 

Asset quality process is deterministic and follows the process: 

 dq qdt= −θ . (2) 

In (2), the constant 0θ >  represents the asset’s mean depreciation rate per unit of time 

and incorporates both physical deterioration and functional obsolescence. 

 

We introduce the valuation function ( )V p,q , which is defined as the continuance value 

of the representative incumbent real property asset and its redevelopment option. The 

value is defined as a function of  p  and q  distinctly instead of the net rental income 

x pq=  since we are interested in seeking the separate net rental price and asset quality 

trigger levels signifying redevelopment. By applying the general result derived by 

Shimko (1992), the valuation function has to satisfy the bivariate partial differential 

equation: 

 
2

2 21
2 2 0∂ ∂ ∂

σ + α − θ − µ + =
∂ ∂∂p

V V V
p p q V pq

p qp
. (3) 

 

Paxson & Pinto (2005) demonstrate that for equations of the type (3), their 

dimensionality can be reduced to univariate by applying the transformation x pq= . So 

defining ( ) ( )F x V p,q=  we have: 
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2

2 21
2 2 0∂ ∂

σ + η − µ + =
∂∂p

F F
x x F x

xx
, (4) 

where η = α − θ . The solution to (4) is: 

 1 2
x,1,1 x,1,2

xF A x A xβ β= + +
µ − η

, (5) 

where the x,1,1A  and x,1,2A  are non-negative constants to be determined and the exponents 

1β  and 2β  are evaluated from: 

 
2

1 1
1,2 2 22 2 2

2η η µ⎛ ⎞ ⎛ ⎞β = − ± − +⎜ ⎟ ⎜ ⎟σ σ σ⎝ ⎠ ⎝ ⎠
, 

with 1 1β ≥  provided that the condition ensuring a definite lifetime 0µ − η ≥  is not 

violated, and 2 0β < . 

 

Although this transformation reduces the dimensionality of the fundamental valuation 

relationship to one and facilitates its solution, its disadvantage is the possible ambiguity it 

can create. Terms in the valuation relationship (5) are normally eliminated by considering 

the limiting values of the function, that is the asymptotic values of ( )F x 0→  and 

( )F x → ∞ . However, the limiting value of say x 0=  may arise from either p 0=  or 

q 0= . If we presume that x 0=  arises from a zero net rental price, then the asset value 

including the redevelopment option is zero and almost surely no redevelopment would be 

contemplated. The exponent for x  cannot be negative. In contrast, if we presume that 

x 0=  arises from a zero quality level then there is some justification for asset 

redevelopment. In this case, the asset value including the option would be positive and 

the exponent for x  in the solved valuation relationship cannot be positive. These two 

conflicting interpretations are probably equally contestable although it can be argued that 

when the net rental price is stochastic and the asset quality is deterministic, the former is 

possibly more defensible. To avoid this ambiguity, our approach is to avoid transforming 

the fundamental valuation relationship and to propose an analytical solution that solves 

the partial differential equation directly. Although this product transformation is 

unsuitable for the present formulation, for a different set of model underlying 
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circumstances, it is possible that this transformation is a viable means for reducing 

dimensionality.  

 

In their solution of a bivariate partial differential equation, Adkins & Paxson (2006) set 

the homogenous element of the solution to be equal to the product of the variables, each 

raised to a distinct exponent. In the same way, we can propose that the solution to (3) has 

the generic form: 

 pqV Bp qψ λ= +
µ − η

 (6) 

It is straightforward to show by substituting this generic form  in (3), that the valuation 

relationship is satisfied provided that the following condition on the parameters is 

fulfilled: 

 ( ) ( ) 21
p2Q , 1 0ψ λ = ψ ψ − σ + αψ − θλ − µ = . (7) 

This is the equivalent of the single stochastic variable condition as shown by Dixit & 

Pindyck (1994), except that (7) includes the additional parameter λ  and that it relates to 

one stochastic and one deterministic variable.   

 

( )Q ,ψ λ  defines a parabola that passes through the axis 0λ =  when: 

 
2

1 1
, 2 22 2 2

p p p

2
+ −

⎛ ⎞ ⎛ ⎞α α µ
ψ = − ± − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟σ σ σ⎝ ⎠ ⎝ ⎠

 

where 1+ψ ≥  and 0−ψ < , Dixit & Pindyck (1994), and it displays its greatest curvature 

when λ  attains its minimum. When λ  is treated as a known,  ( )Q ψ λ  is a quadratic 

function of ψ  and positive change in λ  causes the curve to be pulled down vertically by 

an amount θλ  and to widen the distance between the two roots for ψ : 

 ( )
2

1 1
1,2 2 22 2 2

p p p

2⎛ ⎞ ⎛ ⎞ µ + θλα α
ψ = − ± − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟σ σ σ⎝ ⎠ ⎝ ⎠

 (8) 

It can be easily verified that 1 1 µ − α⎛ ⎞ψ ≥ ⇔ λ ≥ −⎜ ⎟θ⎝ ⎠
 and 2 0 µ

ψ ≤ ⇔ λ ≥ −
θ

.  
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Since for any permissible value of 
22

p 1
2 2

p2
⎛ ⎞σ α µ

λ ≥ − − −⎜ ⎟⎜ ⎟θ σ θ⎝ ⎠
 yielding real roots for ψ  there 

exists two possible solutions for ψ , then (6)  takes the form: 

 1 1 2 2
1,1 1,2

pqV B p q B p qψ λ ψ λ= + +
µ − η

 (9) 

The form of (9) can be simplified through applying the boundary conditions on the 

limiting behaviour of V . It can be argued that the value of the real property asset 

including its redevelopment option will tend to zero as the net rental price p  approaches 

zero. This implies that the coefficient 1,2B 0=  to ensure that V  does not become 

unbounded for p 0→ . Then (9) simplifies to: 

 1 1
1,1

pqV B p qψ λ= +
µ − η

. (10) 

Although no constraints are imposed on the permissible range of values for λ  except 

those stated above, we can surmise that 1 0λ <  since for p  fixed, the value of the 

redevelopment option increases as asset quality declines. 

 

From observing both the net rental price commanded by the asset and its quality, 

management has to deliberate on whether it is economically justified to continue with the 

asset in its current state or to incur a redevelopment investment cost to raise its quality to 

a superior level and benefit from the potentially higher net rental incomes. At the point of 

redevelopment, asset quality has deteriorated to a level denoted by q . At this asset 

quality, the value of the asset and its redevelopment option is ( )V p, q  for the prevailing 

price p . The redevelopment investment cost, which is denoted by K , instantaneously 

raises the asset quality from q  to a superior level q q> . Following the redevelopment, 

the value of the asset and the redevelopment option becomes ( )V p, q . Management will 

choose the threshold quality q , the superior level q  attained through investment  and the 

net rental price p  to maximise the expected gain from the redevelopment. The optimal 

choices for q , q  and p  are the solutions to: 
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 ( ) ( ){ }
p,q,q

0 max V p, q K V p, q= − − . (11) 

subject to q q> . The expression being optimized represents the asset value of a newly 

redeveloped property less the investment cost incurred in raising the quality to a superior 

level and the asset value at the threshold quality level that is sacrificed. The value 

matching condition requires that the overall gain is zero. The optimal values determined 

from (11) are denoted by q̂ , q̂  and p̂  respectively.  

 

The redevelopment investment cost K  is assumed to be composed of a fixed element fK  

and a variable element vK , f vK K K= + . In his real options analysis of property 

redevelopment, Williams (1997) assumes a variable investment cost that depends on the 

threshold and superior quality levels, q  and q . He adopts the Cobb-Douglas power 

function with homogeneity greater than one to represent the investment cost behaviour: 

 
1

1 2 1 2
v

q
K cq q c q

q

γ

γ γ γ +γ⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
 

 where c 0> , 1 0γ <  and 2 11γ > − γ  are all known constants. Cost behaviour is 

characterised as a decreasing function of the threshold to superior quality ratio and as an 

increasing function of the superior quality level. After specifying this variable cost 

function, Williams (1997) subsequent comments that the redevelopment cost may entail a 

fixed element, but this is ignored because of the difficulty in forming an analytical 

solution. An aspect of our analysis is to include both variable and fixed elements in the 

investment cost function.    

 

The value matching condition is determined from (11) expressed at their optimal values: 

 1 1 1 1
1,1 1,1

ˆˆ ˆpq p̂qˆˆ ˆ ˆB p q B p q Kψ λ ψ λ+ = + −
µ − η µ − η

. (12) 

The asset value including the redevelopment option on the point of redevelopment is 

equal to the value following the redevelopment to raise the quality to a superior level less 

the investment cost. The first order conditions for (11) to attain a maximum are the 

associated smooth pasting conditions, which can be expressed by:  
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( ) ( ){ }

ˆu u

V p, q K V p, q
0 for u  p, q, q

u
=

∂ − −
= =

∂
. 

 

The smooth pasting condition for p  is: 

 1 1 1 11 1
1 1,1 1 1,1

ˆq̂ qˆˆ ˆ ˆB p q B p qψ − λ ψ − λψ + = ψ +
µ − η µ − η

. 

It follows that the value of 1,1B  is: 

 
( ) 1 1 1 11,1

1

ˆˆ ˆ ˆpq pq 1B ˆˆ ˆ ˆp q p qψ λ ψ λ

−
=

ψ µ − η −
, 

which is non-negative provided that 1 0ψ >  and 1 0λ < . Substituting for 1,1B  in (12), we 

obtain: 

 
( )

1

1

ˆˆ ˆ ˆpq pq
K

1
− ⎛ ⎞ψ

= ⎜ ⎟µ − η ψ −⎝ ⎠
. (13) 

This states that the difference in the earnings generated by the property asset and 

evaluated as a perpetuity, just prior and after the redevelopment has to equal the 

investment cost multiplied by a factor. Since 1 1ψ >  then 1

1

1
1

ψ
>

ψ −
, which can then be 

regarded as a mark-up factor. So, redevelopment occurs when the incremental earnings 

generated by asset redevelopment evaluated as a perpetuity is at least equal to the 

investment cost adjusted by this markup factor. This is the asset redevelopment version of 

an equivalent relationship for a risky investment opportunity, McDonald & Siegel (1986) 

and Dixit & Pindyck (1994). The presence of uncertainty in one of the model variables 

implies that the value generated by the redevelopment, evaluated as the incremental net 

earnings expressed as a perpetuity has to exceed its investment cost by a significant 

amount for redevelopment to be acceptable. This requirement breaches the traditional net 

present rule that demands that the value of the incremental net earnings has to at least 

equal the investment cost. Clearly, the behaviour of 1

1

1
1

ψ
>

ψ −
 is critical in understanding 

the conditions conducive to redevelopment. It follows from (7) that 1 1ψ >  when 
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µ > α − λθ : since λ  is expected to be negative this condition is more binding than the 

requirement that µ > α − θ . 

 

The smooth pasting condition for q  is: 

 ( ) ( ) 21
1 1

11
1 1,1 1

p̂ ˆˆ ˆ ˆB p q c q q
γγ −ψ λ −λ + = −γ

µ − η
. 

It follows that the value of 1,1B  is: 

 1,1 1 v
1

ˆ ˆpq1B K
⎛ ⎞−

= + γ⎜ ⎟λ µ − η⎝ ⎠
, 

which is non-negative provided 1 0λ <  and the sum of net earnings at the threshold level 

evaluated as a perpetuity  and the marginal investment cost due to a change in the 

threshold quality level is positive. Note that this marginal investment cost is negative due 

to 1γ . Substituting for 1,1B  in (12), we obtain: 

 1 1
f v

1 1 1 1

ˆ ˆ ˆpqˆ Qpq 1 Q1 K K 1
⎛ ⎞ ⎛ ⎞γ γ

− − + = + − +⎜ ⎟ ⎜ ⎟µ − η µ − η λ λ λ λ⎝ ⎠ ⎝ ⎠
, (14) 

where 
1

q̂Q
q̂

λ
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

.  

 

The smooth pasting condition for q  is: 

 ( ) ( ) 21
1 1

11
1 1,1 2

p̂ˆ ˆˆ ˆ0 B p q c q q
γ −γψ λ −= λ + − γ

µ − η
. 

It follows that the value of 1,1B  is: 

 1,1 2
1

ˆˆ1 pqB K
⎛ ⎞−

= − γ⎜ ⎟λ µ − η⎝ ⎠
 

which is non-negative provided 1 0λ <  and that the net earnings at the superior level 

evaluated as a perpetuity exceeds the marginal investment cost due to a change in the 

higher quality level. Substituting for 1,1B  in (12), we obtain: 
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 22
f v

1 1 1 1

ˆ ˆ ˆpqQ Qp̂q 11 K K 1
γ⎛ ⎞ ⎛ ⎞γ

− + − = + − +⎜ ⎟ ⎜ ⎟µ − η λ λ µ − η λ λ⎝ ⎠ ⎝ ⎠
, (15) 

where 
1q̂ 1Q ˆ Qq

λ
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

. 

 

The condition, which restricts the scope of the exponents 1ψ  and 1λ  in ( )1 1Q , 0ψ λ = , (7) 

and the three reduced form relationships that are derived from the value matching and 

associated smooth pasting conditions, (13), (14) and (15) collectively form a set of 

simultaneous non-linear equations, from which we can solve the five unknown quantities,  

1ψ , 1λ , p̂ , q̂  and q̂ . Superficially, this may suggests that there is inadequate information 

to solve the unknowns uniquely. The model sets out to determine the optimal values for 

p , q  and q  that identify the point of redevelopment by setting the asset values 

instantaneously before and after the investment to be equal. For a single set of optimal 

values p̂ , q̂  and q̂ , management may wish to consider the effect of a perturbation of p  

away from p̂  and enquire whether this new price level should result in new optimal 

values for q  and q . If the threshold quality level q  remained at q̂  but p  is observed to 

increase above p̂ , this should warrant a greater investment in quality improvement 

sustained by the increase in p  and this should be recognized in an increased value of the 

superior quality level above q̂ . By perturbing the value of p  away from p̂ , a new 

optimal superior quality level has been discovered and this generates an alternative set of 

optimal values p̂ , q̂  and q̂ . By considering all possible perturbations, an infinite set of 

optimal values can be generated that characterise the various trade-offs between the three 

variables. This infinite set of optimal values can be represented by the function 

( )ˆˆ ˆG p, q, q 0= . This function forms the missing equation. In their analysis of stochastic 

price and cost on operating policy, Dixit & Pindyck (1994) show that the optimal solution 

is not unique and the function relating the optimal values is represented by a linear ray 

passing through the origin. The equivalent in our analysis is specified by (13), which 
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reveals that the relationship between the three optimal variables is non-linear rather than 

linear. 

 

The interpretation concerning the form of the maximand (11) is that redevelopment of the 

threshold quality level to the superior quality level can be repeated on a countless number 

of future occasions. Although this representation is a theoretical construct because of the 

complexity involved in formulating a finite number of repeatable occasions exceeding 

one, the results it produces does provide an bound to the required threshold and superior 

levels for a finite number of future redevelopments. At the opposite extreme from a 

countless number of redevelopment occasions is a single future redevelopment occasion. 

Similarly, the bounds on the quality levels can be found for a single future redevelopment 

occasion. Within these two bounds lie the quality levels for any number of future 

redevelopment occasions. 

 

When the number of future redevelopment occasions is restricted to one, the value 

maximizing function (11) has to be amended by setting ( ) pqV p, q =
µ − η

. This change 

incurs no adjustment to the smooth pasting condition for q  and (14) remains intact. It 

does involve a change to the smooth pasting condition for p  but the reduced form 

equation (13) remains unaffected. The smooth pasting condition for q  does require 

amending and this changes (15) to: 

 2 v
pq K= γ

µ − η
. (16) 

Combining this expression with (13) yields: 

 
( ) ( ) ( )

1 1
f

1 1 1

ˆ ˆ ˆpqp̂q 1 K
1 1

⎛ ⎞ ⎛ ⎞ψ ψ
− − =⎜ ⎟ ⎜ ⎟⎜ ⎟µ − η γ ψ − µ − η ψ −⎝ ⎠⎝ ⎠

. (17) 

 

It is straightforward to derive the zero fixed investment cost solution from these results 

by setting fK 0= . In the appendix, we show that this solution is identical to the results 

produced by Williams (1997). 
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Numerical Results 
 

In this section, we examine the relationship between the optimal threshold and 

redevelopment quality levels for various net rental prices, the effect of fixed investment 

cost on these optimal levels, and the impact of net rental price volatility on the solution. 

The results are determined from calculations using data mainly supplied by Williams 

(1997). 

 

The relationship between the optimal threshold and redevelopment quality levels for 

various net rental prices is exhibited in Figure (1). The domain of the relationships is 

constrained for low net rental prices owing to the fixed element of the redevelopment 

investment cost. From there onwards, the relationship is increasing at an increasing rate 

and higher net rental prices command higher threshold and redevelopment quality levels 

since these are more affordable when the incremental value from redevelopment is 

greater. The ratio of the redevelopment to the threshold quality level q̂
q̂

 declines as the 

net rental price increases and tends to the ratio for the case with a zero fixed investment 

cost element, which is a constant for all net rental prices. Increases in the net rental price 

imply that the relative value of the fixed investment cost becomes increasingly less 

important and the relationships for the two cases merge for large p . Before the two 

relationships do merge, the relationship for the case of a positive fixed cost element 

always lies below that for the zero fixed cost element, for both the threshold and 

redevelopment quality levels. This result partly confirms the conjecture of Williams 

(1997) that “a fixed cost would reduce the quality at which development begins and raise 

the quality of new construction”, bearing in mind that the introduction of the fixed 

investment cost element does change the total investment cost. This effect is also 

revealed in Figure (2) that exhibits the relationship between the threshold and 

redevelopment quality levels with a fixed investment cost element, which reveals that the 

relationship is decreasing. The effect of increasing the fixed investment cost element on 
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the overall investment cost is shown in Table (1), together with other interesting 

parametric values. 

 

Table (1) 

Solution values against fixed investment cost  

fK  1ψ  1λ  q̂ q̂
q̂
q̂

vK K  
vK

K
 

0.0 4.2301 -1.5841 1.6760 4.3154 2.575 16.80 16.80 100.0% 

0.5 4.2947 -1.4626 1.5932 4.2711 2.681 16.62 17.12 97.1% 

1.0 4.3587 -1.3401 1.5096 4.2234 2.798 16.43 17.43 94.3% 

1.5 4.4224 -1.2162 1.4251 4.1718 2.927 16.21 17.71 91.5% 

2.0 4.4858 -1.0907 1.3396 4.1159 3.073 15.98 17.98 88.9% 

2.5 4.5495 -0.9629 1.2529 4.0551 3.236 15.72 18.22 86.3% 

3.0 4.6136 -0.8320 1.1649 3.9885 3.424 15.43 18.43 83.7% 

3.5 4.6780 -0.6970 1.0751 3.9148 3.641 15.11 18.61 81.2% 

4.0 4.7451 -0.5573 0.9836 3.8332 3.897 14.74 18.74 78.7% 

4.5 4.8138 -0.4100 0.8894 3.7407 4.206 14.32 18.82 76.1% 

5.0 4.8864 -0.2524 0.7920 3.6342 4.589 13.84 18.84 73.5% 

5.5 4.9648 -0.0787 0.6899 3.5077 5.085 13.25 18.75 70.7% 

Based on the following parametric values: 
pσ  α  θ  µ  c  1γ  2γ  p  

0.1 0 0.02 0.1 1 -0.2 2.0 1 
 
Table (1) reveals that as the fixed investment cost element increases, the increase in the 

overall investment cost less. By allowing the variable investment cost element to be 

freely determined from the model equations and not constraining the overall investment 

cost, the value maximization function adjusts the variable investment cost element 

downwards but less than the increase in the fixed investment cost element. Increases in 

the fixed investment cost element modify the resulting optimal values for 1ψ , 1λ ,  q̂  and 

q̂  with p̂  fixed and in particular, the value of 1λ  declines and may possibly become 

positive. Now, the conditions underlying the construction of the model presume that 1λ  is 

negative and since the model does not impose a constraint on its feasible values, a 

possibility exists that 1λ  will enter its unacceptable range. This occurs when fK  is 
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approximately greater than 6 and over that range, the model fails to produce a viable 

solution. This aspect does not affect a model having a zero fixed investment cost element 

since 1ψ  and 1λ  are constants. 

 

The effect of changes in the volatility of net rental price on the optimal threshold and 

redevelopment quality levels is presented in Figure (3). This reveals that volatility 

increases produce a decline in the optimal threshold and redevelopment quality levels. 

This result corroborates the findings of Williams (1997) and other writers on asset 

replacement, Mauer & Ott (1995) and Dobbs (2004), that greater prudence and patience 

should be exercised before asset redevelopment for volatility increases in the underlying 

stochastic variable. Table (2) shows that volatility increases lowers both the threshold and 

the redevelopment quality levels. Greater uncertainty also implies that the redevelopment 

quality level declines but that the ratio of the threshold to the redevelopment quality 

levels increases. The table also reveals the common finding of real options analysis that 

the value of the asset together with its redevelopment option ( )V p,q  increases with 

volatility for fixed values of p 1=  and q 3= ; q  was fixed to ensure consistency across 

changes in volatility and at a value between q̂  and q̂ . Table (3) presents the market 

values for the asset for two distinct quality levels q 2=  and q 3= , and the corresponding 

values of the capitalization rates. The table reveals that both market values and 

capitalization rates decline with asset deterioration. The effect of increasing volatility is 

to increase the market values but produce a decline in the capitalization rates. This 

analysis is replicated for ˆq q=  and ˆq q=  that produces similar results, see Table (4) 

 

As volatility increases, the value of 1λ  declines until it reaches its unacceptable range, at 

which point the optimal threshold and redevelopment quality levels adopt plausible 

values but the coefficient 1,1B  becomes negative instead of positive and ( )V p,q  

dramatically falls. This feature constraining model universality is similarly shared by the 

model of Williams (1997) in which the fixed investment cost element is zero.  
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Table 2 

Solution values against net rental price volatility 

pσ  1ψ  1λ q̂ q̂ ( )V p,q
q̂
q̂

 

0.0% 11.6992 -4.9613 1.7096 4.6295 25.13 2.71 

5.0% 7.0816 -2.3064 1.4754 4.4191 25.73 3.00 

10.0% 4.6134 -0.8320 1.1649 3.9884 28.62 3.42 

12.5% 3.9591 -0.4236 1.0223 3.7408 33.58 3.66 

14.0% 3.6593 -0.2314 0.9410 3.5873 42.31 3.81 

14.5% 3.5711 -0.1740 0.9145 3.5355 48.73 3.87 

15.0% 3.4877 -0.1193 0.8884 3.4835 60.64 3.92 

                            Based on the following parametric values: 
α  θ  µ  c  1γ  2γ  fK  p  

0 0.02 0.1 1 -0.2 2.0 2 1 
 

Table 3 

Option value against net rental price volatility 

 q 2=   q 3=   

pσ  ( )V p,q  ( )
pq

V p,q
 

( )V p,q  ( )
pq

V p,q
 

0.0% 17.6286 11.3% 25.1287 11.9%

5.0% 18.5325 10.8% 25.7324 11.7%

10.0% 21.7430 9.2% 28.6229 10.5%

12.5% 26.8535 7.4% 33.5793 8.9%

14.0% 35.6745 5.6% 42.3056 7.1%

14.5% 42.1316 4.7% 48.7305 6.2%

15.0% 54.0775 3.7% 60.6439 4.9%

                            Based on the following parametric values: 
α  θ  µ  c  1γ  2γ  fK  p  

0 0.02 0.1 1 -0.2 2.0 2 1 
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Table 4 

Option values at threshold and redevelopment quality levels  

against net rental price volatility 

pσ  ( )ˆV p, q  ( )
ˆpq

ˆV p, q
 ( )ˆV p, q  ( )

ˆpq
ˆV p, q

 

0.0% 16.3416 10.5% 38.5940 12.0%

5.0% 16.0585 9.2% 37.1259 11.9%

10.0% 17.6662 6.6% 36.0955 11.0%

12.5% 22.0552 4.6% 38.9870 9.6%

14.0% 30.4723 3.1% 46.4982 7.7%

14.5% 36.7995 2.5% 52.5249 6.7%

15.0% 48.6177 1.8% 64.0434 5.4%

                            Based on the following parametric values: 
α  θ  µ  c  1γ  2γ  fK  p  

0 0.02 0.1 1 -0.2 2.0 2 1 
 

Whether or not the fixed investment cost element is zero, the value of 1ψ  and thereby the 

value of  1λ  is influenced by the value of pσ . When the fixed investment cost element is 

zero, the solution for 1ψ  is found from (38): 

 ( ) ( )( ) ( )( )21
p 1 1 1 2 1 1 22 1 1 0σ ψ ψ − + α + θ γ + γ − ψ − µ + θ γ + γ =  (18) 

Replacing ( )1 1 1 1ψ = φ λ − +  where 1
1 21−φ = − γ − γ , (18) can be transformed into a 

quadratic function of 1λ : 

 ( )( ) ( )2 2 2 21 2 1 21 1 1
p 1 1 p 1 2 p2 2 2

1 2 1 2

1 1 0
1 1

⎛ ⎞ ⎛ ⎞γ + γ + γ + γ
σ λ − λ σ + α + θ γ + γ − − µ − σ + α =⎜ ⎟ ⎜ ⎟γ + γ − γ + γ −⎝ ⎠ ⎝ ⎠

 (19) 

Since the coefficient of 1λ  in (19) is negative, then for 1λ  to have a negative root: 

 ( )2 1 21
p2

1 2 1
γ + γ

µ > σ + α
γ + γ −

. (20) 

Clearly for fixed µ , (20) will be violated as pσ  increases. The model lacks universality 

for a relatively large pσ .   

 



20 

Fixed Investment Cost Model  
 

When the redevelopment investment cost is restricted to be constant, fK K= , there exists 

no expression that constrains the value of the threshold and the superior quality levels and 

(11) does not yield definite solutions for q  and q . To reach a solution, we have to 

impose a bound on one of the quality levels such that q  cannot exceed a specified upper 

limit or q  is not permitted to fall below a specified lower limit. The model is amended by 

proposing that management will always raise the asset quality up to a known superior 

level 0q q= . In this representation, the asset quality deteriorates with usage and declines 

to a determined threshold level q , which is the point of redevelopment. At this threshold 

level, the asset quality is improved and raised to the superior level 0q q>  by an injection 

of investment fK . Under this model, the variable q  is being treated as a constant and 

consequently it has no smooth pasting condition, which implies that both the numbers of 

equations and unknowns are reduced by one. The unknowns are 1λ , 1ψ  and q ; the net 

rental price p  is treated as a given quantity for the same reasons as explained above. 

These three unknowns are determined from the restriction on the parameters for the 

homogenous solution to the fundamental partial differential equation (8) and the amended 

reduced form equations (13) and (14) for p̂  and q̂  respectively:  

 
( )

1
f

1

ˆˆ ˆ ˆpq pq
K

1
− ⎛ ⎞ψ

= ⎜ ⎟µ − η ψ −⎝ ⎠
, (21) 

 0 0
f

1 1

ˆ ˆpqp̂q Q11 K
⎛ ⎞

− − + =⎜ ⎟µ − η µ − η λ λ⎝ ⎠
 (22) 

where 
1

0
0

qQ
q̂

λ
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

. 

 

 

 

 



21 

Renovation Option with Two Stochastic Variables 
 

The merit of the Cobb-Douglas power function is its capacity to incorporate both the 

threshold and redevelopment quality levels in the investment cost function. However, it 

possesses the disadvantage of introducing a restrictive condition on the value of µ . This 

section enquires whether this restriction is due to the particular formulation that treats the 

net rental price p  as a stochastic variable and the asset quality q  as a deterministic 

variable. If asset quality is also treated as a stochastic variable, the restriction may no 

longer arise or its restrictive effect may be relaxed. Representing asset quality by a 

stochastic evolution is not implausible since wear and tear through usage may be caused 

by both regular and irregular factors, incidence may occur randomly during the asset 

lifetime, or the extent of the deterioration may be random. It is now assumed that asset 

quality is a stochastic variable and that its evolution is represented by a geometric 

Brownian motion with drift: 

 q qdq qdt qdZ= −θ + σ . (23) 

In (2), the constant qσ  denotes the standard deviation per unit of time, and qZ  the 

standard Wiener random variable. For completeness, we specify that changes in rental 

prices and asset quality evolve dependently, which is captured by their covariance 

[ ] p qCov dp,dq dt= ρσ σ  with the correlation coefficient 1ρ ≤ .  

 

We introduce the valuation function ( )JV p,q , which is defined as the continuance value 

of the representative real property asset and its redevelopment option. The valuation 

function has to satisfy the bivariate partial differential equation that incorporates 

stochastic variations in both p  and q : 

 
2 2 2

2 2 2 21 1
2 22 2 0

∂ ∂ ∂ ∂ ∂
σ + σ + ρσ σ + α − θ − µ + =

∂ ∂ ∂ ∂∂ ∂
J J J J J

p q p q J

V V V V V
p q pq p q V pq .

p q p qp q
(24) 

 

The solution to (24) is similar to (6): 
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 J J
J

pqV B p qβ χ= +
µ − η

, (25) 

where J p qη = ρσ σ + α − θ  and JB 0> , 0β >  and 0χ <  are unknown parameters whose 

values are to be determined. By substituting (25) in (24), it can be established that (25) is 

a generic solution and that the following condition restricting the scope of the parameters 

has to be fulfilled: 

 ( ) ( ) ( )2 21 1
J p q p q2 2Q , 1 1 0β χ = β β − σ + χ χ − σ + βχρσ σ + αβ − θχ − µ = . (26) 

 

The remaining component of the model, which specifies the value maximization 

condition, is similar to (11): 

 ( ) ( ){ }J Jp,q,q
0 max V p, q K V p, q= − − . (27) 

If investment cost is treated as a power function with a zero fixed cost element, then from 

the Appendix the following simplifications can be applied: 

 ( ) 11 1 −χ = + β − φ  (28) 

where ( ) 1
1 21 0−φ = − γ − γ <  and we set 1 0−ϕ = φ < .  Substituting (28) in (26) to eliminate 

χ  yields: 

 ( ) ( ) 21
J 2Q 1 0β β ββ = β β − σ + βα − µ =  

where: 

 ( )
( ) ( )

2 2 2 21 1 1
p p q q2 2 2

21
p q q2

21
q2

,

1 ,

1 1 .

β

β

β

σ = σ + ρσ σ ϕ + σ ϕ

α = α + ρσ σ + σ ϕ − ϕ − θϕ

µ = µ + θ − ϕ + σ ϕ − ϕ

 

Since 1β >  then 0βµ > , which requires that ( ) ( )21
q21 1µ > θ ϕ − + σ ϕ ϕ − , which should 

always hold, and β βµ > α , which requires that: 

 p qµ > α + ρσ σ − θ . (29) 

 

Substituting (28) in (26) to eliminate β  yields: 

 ( ) ( ) 21
J 2Q 1 0χ χ χχ = χ χ − σ + χα − µ =  
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where: 

 ( )
( ) ( )

2 2 2 21 1 1
q p q p2 2 2

21
p q p2

21
p2

,

1 ,

1 1 .

χ

χ

χ

σ = σ + ρσ σ φ + σ φ

α = αφ + ρσ σ + σ φ − φ − θ

µ = µ − α − φ + σ φ − φ

 

Since 0χ <  then 0χµ > , which requires that: 

 ( ) ( )21
p21 1µ > α − φ + σ φ φ − . (30) 

 

Conditions (29) and (30) must be fulfilled to produce a viable solution. When there is a 

zero covariance between the changes of net rental price and asset quality 0ρ = , the asset 

quality volatility plays no role in deciding the existence of a viable solution. When 

disturbance factors cause both a decline in net rental price and asset quality, then 0ρ > , 

which makes condition (29) more binding. Clearly, a negative correlation between the 

two variables relaxes the condition. However, the more restrictive condition is (30). The 

effect of the terms ( )1− φ  and ( )1φ φ −  is likely to inflate the values of α  and 2
pσ  

respectively. By adopting the values 1 0.2γ = − , 2 2.0γ = , 0α = , 0.1µ =  used by 

Williams (1997), ( )1 2.25− φ =  and ( )1 2.8125φ φ − = , then p 27%σ < . It becomes quite 

possible that condition (30) is not satisfied for α  and 2
pσ  in their acceptable ranges. 

When this occurs, the parameter χ  becomes positive and the asset value becomes 

unstable.  

 

The simplification analysis cannot be applied to the non-zero fixed investment cost 

element, but it is surmised that similar kinds of restrictions will result. 

 

Renovation Options with the Option to Construct  
 

Exercising the redevelopment option or the redevelopment option entails owning the 

asset and ownership can be acquired through either purchase or construction. The 

decision to construct a real property asset will depend on many factors including its 

rentable value, the cost of construction and it sale price. This section explores the extent 
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that the decision to construct a real property asset is influenced by the prospective 

redevelopment option that is created through construction. The decision to construct 

involves an option opportunity arising from deferability, McDonald & Siegel (1986), M. 

Majd & R. S. Pindyck (1987), Williams (1991).  So, the opportunity to construct carries 

the option to defer, which carries the redevelopment option and the decision to construct 

can be interpreted as an option on an option. When this compound option possesses 

greater value than the single option to construct, the prospective opportunity to redevelop 

the asset at some subsequent time reduces the hurdle required to exercise the option to 

construct. It is important therefore to be able to distinguish the conditions that produce a 

hurdle reduction and to know whether they apply universally. 

 

The value bV  of the option to construct a real property asset is assumed to depend on the 

net rental earnings x , ( )b bV V x= , where net earning are defined as the product of the 

net rental price p  and the quality of the constructed asset bq , bx pq= . Management 

decides on the asset quality for the proposed constructed asset using its knowledge on 

construction costs and the prevailing net rental price. We treat asset quality as a constant 

in the sense that its value does not change over time during the construction phase. 

Following the construction, which is assumed to take place instantaneously, the asset 

quality begins to deteriorate with usage over its lifetime but before the asset is 

constructed, its quality is treated as a constant to be determined. Since net rental price 

evolves according to (1), the behaviour of net earnings described by: 

 b p b p

p p

dx pq dt pq dZ

xdt xdZ .

= α + σ

= α + σ
 

The value of the option to construct is determined from the fundamental valuation 

relationship expressed as a partial differential equation: 

 
2

2 21
2 2 0

∂ ∂
σ + α − µ =

∂∂
b b

p b

V V
x x V

xx
, (31) 

since this option generates no cash flow. The solution to (31), which is well documented, 

is: 

 ( ) 1
b b1V x A xε= , (32) 
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where 1ε  is the positive root of the quadratic equation: 

 ( ) ( )21
p2Q 1 0ε ε = σ ε ε − + αε − µ = , (33) 

which constrains the parametric values of the homogenous solution, and: 

 
2

1 1
1,2 2 22 2 2

p p p

2⎛ ⎞ ⎛ ⎞α α µ
ε = − ± − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟σ σ σ⎝ ⎠ ⎝ ⎠

. 

 

The value matching condition for asset construction defines the point to build when the 

value of the option to construct is equal to the value of the asset following construction 

net of the construction investment cost. The value of the newly constructed asset is the 

asset value including the redevelopment option at the net rental price p  and quality bq , 

(10). The construction investment cost denoted by b bf bvK K K= +  is composed of a fixed 

element bfK  and a variable element 3
bv b bK c qγ= , where bc  and 3γ  are known positive 

constants. Since construction is more expensive than redevelopment, bK K> .  

 

At the point of build, the net rental price attains its trigger level bp̂  and the build quality 

is bq̂ . The value matching condition that expresses the equality of value just prior and 

after construction is: 

 1 1 1 1 b b
1 b b 1,1 b b b

ˆ ˆp qˆ ˆ ˆ ˆA p q B p q Kε ε ψ λ= + −
µ − η

. (34) 

The associated smooth pasting condition for p is given by: 

 1 1 1 11 1 b
1 1 b b 1 1,1 b b

q̂ˆ ˆ ˆ ˆA p q B p qε − ε ψ − λε = ψ +
µ − η

. 

Substituting this expression in (34) yields: 

 1 1b b 1 1 1
b 1,1 b b

1 1

ˆ ˆp q ˆ ˆK B p q
1 1

ψ λ⎛ ⎞ε ε − ψ
= − ⎜ ⎟µ − η ε − ε −⎝ ⎠

. (35) 

The real options hurdle for accepting an investment is the investment cost bK  adjusted 

by the mark-up factor 1

1 1
ε

ε −
. (35) reveals that the hurdle for accepting the investment 



26 

falls when 1 1ε > ψ  since 
1 1

1,1 b b

1

ˆ ˆB p q
0

1

ψ λ

>
ε −

. This condition is true based on data set. To 

identify the conditions supporting the condition, we compare the separate Q  functions 

for 1ψ  assuming a variable investment cost, (38) and for 1ε , (33): 

 ( ) ( ) ( )( ) ( )( )21
1 p 1 1 1 1 2 1 22Q 1 1 0ψ ψ = σ ψ ψ − + ψ α + θ γ + γ − − µ + θ γ + γ = , 

 ( ) ( )21
1 p 1 1 12Q 1 0ε ε = σ ε ε − + αε − µ = . 

Since both these Q  functions are quadratic equations, 1 1ε > ψ  when ( ) ( )Q Qψ εψ > ψ . 

This requires that: 

 1
1 2

11
1

ψ = +
γ + γ −

. 

It is already known that 1 1ψ > , but now we impose a stricter condition to require that the 

redevelopment option lowers the investment hurdle. 

 

Conclusion 
 

The quasi-analytical method is adopted to develop the solution for the asset renovation 

option model when the investment cost contains both fixed and variable elements. 

Although the threshold and redevelopment quality levels may influence the investment 

cost, other costs of a fixed nature such as consultancy fees, levies and the loss due to 

disruption may also be important. Although producing a set of simultaneous non-linear 

equations that are not amenable to yielding explicit solutions, the adopted method has the 

advantage that these equations are capable of manipulation so in principle important 

derivatives such as “vega” can be derived analytically. The merit of the solution method 

also lies in its capacity to cope with either fixed or variable investment cost and from the 

generalised solution it is possible to derive the special case for a variable investment cost. 

The derivation applies a transformation of the same form as used by Williams (1997) in 

his analysis of the case and produces the identical result. Two cases of interest emerge 

from the adopted solution method analysis. The result common to real options analyses of 

investment opportunities that the value of the opportunity has to exceed the investment 
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cost by a greater than one mark-up factor is replicated for the renovation option problem. 

It is established that the incremental net value generated by enhancing the quality level 

from the threshold to the redevelopment level has to exceed the renovation investment 

cost by a mark-up factor exceeding one. The second interesting case is that the variable 

investment cost function introduces additional conditions into the solution that constrain 

the scope of the parametric values. In particular, the risk-free rate is limited by the values 

of the trend term for net rental price and its volatility. When asset quality is also allowed 

to be stochastic, this change does not modify this condition. Using reasonable parametric 

values, a net rental volatility of 27% was sufficient to upset the solution by making an 

exponent become positive instead of negative. This caused the asset value and its 

renovation option to assume a bizarre behaviour.  

 

Although the quasi-analytical method was applied to asset renovation, there exist 

alternative contexts involving a mix of deterministic and stochastic variables that are 

amenable to an approach of this kind.  Equipment replacements are decided by 

depreciation charges as well as revenues and costs. In their replacement analysis, Mauer 

& Ott (1995) treat depreciation as a function of the stochastic variable cost to keep the 

number of variables in the fundamental valuation relationship to one. Their ploy of 

maintaining a univariate relationship incurs the unreasonable compromise of treating the 

depreciation charge as stochastic but, it is possible to reformulate the model comprising a 

stochastic cost variable and a deterministic depreciation variable in the style of the 

renovation model and solve it using the described method. Similarly, assets whose 

volume deplete at a constant rate through extraction or conversion possess valuation 

relationships involving a stochastic variable that is normally the asset price and a 

deterministic variable representing depletion, Brennan & Schwartz (1985). Instead of 

ignoring the depletion effect by treating the asset reservoir as infinite, the quasi-analytical 

approach is capable of solving the valuation relationship. 

 

A concern with the variable investment cost model is its inadequacy for producing 

solutions that are universally valid. Stricter restrictions than normal have to be imposed 

on the parametric values to ensure that the solution is acceptable. Specifically, it was 
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found that not unreasonable parametric values would produce a positive value of a 

solution variable when it is constrained to be negative. When this jump out of the 

acceptable range occurs, the value of the asset including the renovation option begins to 

take on bizarre values and although some solution values are seemingly plausible the 

overall solution is not acceptable. Part of the explanation may lie in the form of the 

investment cost function and more research on the solution behaviour is called for. 

Another explanation may lie in the formulation itself and an alternative similar to Dixit 

(1989)  may provide one avenue of thought. 

  

Appendix: Variable Investment Cost Model 
 

Using the identical assumptions,  Williams (1997) examines real property asset 

redevelopment for variable investment cost and develops solutions for single and 

multiple redevelopment opportunities. His formulation is a special case of the general 

model and we now proceed to demonstrate that the solutions are identical. Applying his 

procedure for reducing the dimensionality of the model, we rewrite (11) as: 

 1 1 1 2 1 1
1,1 1,1p,q,q

pqpq0 max B p q cq q B p qψ λ γ γ ψ λ⎧ ⎫⎛ ⎞⎛ ⎞⎪ ⎪= + − − +⎨ ⎬⎜ ⎟⎜ ⎟µ − η µ − η⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
. (36) 

By setting 
1 2

1
1

φ =
− γ − γ

, 1
1

11 ψ −
λ = +

φ
, 

1

r pq φ= , and 
1

r pq φ= , (36) can be expressed 

as: 

 1 1 2 11 1 1
1,1 1,1p,q,q

r r0 max p r B r cr r r B rψ φγ φγ ψ−φ φ− φ−⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪= + − − +⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟µ − η µ − η⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
. (37) 

Clearly, the problem satisfying (37) is identical to the problem satisfying: 

 
2

2 21
2 2 0∂ ∂ ∂

σ + α − θ − µ + =
∂ ∂∂p

V V V
p p q V pq

p qp
 

with the transformation 
1

r pqφ=  and ( ) ( )
1 1

F r q V p,q
−

φ= . Following Williams (1997): 

 
2

2 21
2 2 0∂ ∂

σ + α − µ + =
∂∂p r r

F F
r r F r

rr
, 
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where ( )1 2 1α = α + θ γ + γ −r  and ( )1 2µ = µ + θ γ + γr . The solution to this partial 

differential equation takes the form: 

 ( ) 1 2
r1 r2

r r

rF r A r A rψ ψ= + +
µ − α

. 

By substituting the solution into the partial differential equation yields the condition 

constraining the scope of parameters: 

 ( ) ( )21
p r r2Q 1 0ψ ψ = σ ψ ψ − + α ψ − µ = . (38) 

The solution to this quadratic equation is: 

 
2

1 1
1 2 2 22 2 2

2⎛ ⎞ ⎛ ⎞α α µ
ψ = − ± − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟σ σ σ⎝ ⎠ ⎝ ⎠

r r r
,

p p p

. (39) 

Since the redevelopment option has value when the net rental price p  is large, the 

negative exponent would violate this condition and the coefficient r2A  attached to the 

variable r  having the negative exponent is set equal to zero. It follows that the valuation 

relationship for r  is: 

 ( ) 1
r1

r r

rF r A rψ= +
µ − α

. (40) 

The function ( )V p,q  is derived from (40). 

 

Evaluating the variable investment cost solution is more straightforward using this 

method since the value of 1ψ  can be calculated directly from (39) and 1λ  from 

1
1

11 ψ −
λ = +

φ
. The remaining variables q̂  and q̂  are solved for a given value of p̂  after 

modifying (14) and (15) for fK 0= : 

 1 1
v

1 1 1 1

ˆ ˆ ˆpqˆ Qpq 1 Q1 K 1
⎛ ⎞ ⎛ ⎞γ γ

− − + = − +⎜ ⎟ ⎜ ⎟µ − η µ − η λ λ λ λ⎝ ⎠ ⎝ ⎠
, (41) 

 22
v

1 1 1 1

ˆ ˆ ˆpqQ Qp̂q 11 K 1
γ⎛ ⎞ ⎛ ⎞γ

− + − = − +⎜ ⎟ ⎜ ⎟µ − η λ λ µ − η λ λ⎝ ⎠ ⎝ ⎠
 (42) 
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Because of (37), (13), (41) and (42) are dependent and it is impossible to derive unique 

value for q̂ , q̂  and p̂ .  

 

It can be established that the ratio of the quality levels before and after redevelopment q
q

 

is always a constant, or that the superior quality level q  is strictly proportional to the 

threshold quality level q . The proof relies on sequentially eliminating ˆp̂q , ˆ ˆpq  and K  

from (13), (41) and (42) to derive a pair of ratios involving Q  and Q  as well as the 

parametric constants. Since 1Q Q−= , the ratios can be expressed as a quadratic equation 

in Q  (or Q ) from which the positive root is accepted. Since this root depends only on 

parametric constants then the ratio of q  to q  is defined by a constant.  
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Figure (1) 
Relationship between the threshold and redevelopment levels for variations in net rental 
price 
 
 

 
 
Based on the following parametric values: 
 

pσ  α  θ  µ  c  1γ  2γ  fK  
0.1 0 0.02 0.1 1 -0.2 2.0 2 

 

0

5

10

15

20

25

30

35

0 1 2 3 4 5
p

q q̂

q̂



32 

Figure (2) 
The relationship between the threshold and redevelopment quality levels and the fixed 
investment cost 
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Figure (3) 
Relationship between the threshold and redevelopment quality levels and the net rental 
price volatility 
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