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The traditional marshallian rule of investing when the value of the investment is greater than 
its installment cost is modified in the presence of irreversibility and uncertainty, giving rise to 
an option component. Additionally, the interaction of participants holding each one a right to 
invest can give rise under imperfect information to situations of deviations from the optimal 
timing of exercise of the investment and to "herd behavior" or informational cascades given 
that the agents take into account when deciding not only their private set of information but 
also the information released to the market by the decisions made by the other agents. In the 
present paper we develop a model that tries to capture these effects and dynamics by 
showing revision of conditional expectations of the agents, and with considerations regarding 
the degree of dispersion of information in the economy and the effect of the number of 
participants and their effect into their behavior.  
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1 Introduction 
 
The traditional marshallian rule sets investing if the present value V generated by the 
investment is greater than an alternative cost I.  To the purpose of determining the value 
practitioners usually use the method of discounting future cash flows using an appropriate 
risk adjusted rate. However, when we take into consideration the existence of uncertainty 
about the value V and irreversibility of investments1 (Dixit and Pyndick 1994), the investment 
decision can be associated to a call option. Myers (1977) is the first to notice that every firm 
is composed of two kinds of assets, those already in place and growth options. Mc Donald 
and Siegel (1984, 1985 y 1986) work on their research showing analogies between financial 
options and investment and abandonment decisions. More recently, this literature has be 
enriched by the work of Trigeorgis (1988, 1997), Kulatilaka (1992, 1995ª), Grenadier (2000) 
and Kulatilaka (2001) about different applications of the real options framework.  
From another line of research we found literature about “informational cascades” and models 
of aggregation of information and social learning where some sort of “herd behavior” can 
arise, with agents possessing imperfect and asymmetric information and learning about the 
true nature of the events by comparing their partial set of information with the information 
arising from decisions made by others. This line of research has been treated for example by 
Banerjee (1992), Ellison and Fudenberg (1993), Caplin and Leahy (1994) and Gale (1996) 
among others. The purpose of this paper is to contribute to the analysis of the behavior of 
agents when taking their decisions, by introducing elements of the real options literature and 
linking it to a framework of imperfect and asymmetric information.  
As it was mentioned, the methodology of real options uses tools from financial options 
analysis2 applied investment and abandonment decisions. However, while in the world of 
financial options the underlying value of the asset is accurately observed from the equity 
market, in the world of real options the value of the underlying asset is privately calculated, 
and hence can vary according to the perception of different agents. In this context, an agent 
can estimate the underlying value based on private information and based also in her 
perceptions of value inferred by the decisions made by other agents. This "noise" can give 
rise to deviations from the optimal "timing" of investment and abandonment decisions. Even 
more, underdeveloped capital markets can worsen this situation given that parameters of 
calculation of discount rates could be imperfect3. 
The present paper is based mainly on the work of Grenadier (1999) about informational 
externalities and release of private information by decisions of agents, and the work of Caplin 
and Leahy (1994) about investment decisions and herd behavior.  
 
 
 
2 The proposition to be developed 
 
The process of valuation of an asset to decide whether it is optimal or not to invest is 
somehow private and subject to perception errors because though the methods and 
techniques used to value future cash flows are well known, the parameters to be included 
can be different according to who is performing the calculation. We can suggest that there is 
not such a thing as “a” value in the market of real assets, therefore the valuation process can 
be assimilated to a process of statistical inference regarding the calculation of one unknown 
parameter (denoted “value” of the asset V) with incomplete information, by using tools and 
techniques of valuation combined with data, and hence obtaining an estimate Vi = θi V of the 

                                                           
1 For an explanation see (2004a) Annex B of Chapter II. 
2 Black and Sholes (1973) and Merton (1973) have derived under certain assumptions a closed form for the 
valuation of financial options. 
3 In fact development of markets makes that prices adequately convey information helping to reduce the 
uncertainty regarding any “true” price.  
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true parameter, where θi reflects the private perception of investor i4. The fact that Vi is in 
itself a variable subject to private considerations let us think that investors will try to calculate 
a range of values made by an upper and a lower boundary where they feel hey are confident 
that the true value V is in. Therefore we can say for instance that the value V of an asset for 
agent i is θi Vi, fluctuating with some degree of confidence in a range that goes from Vmin to 
Vmax. It is very likely that no investor will accurately calculate the true value θ, therefore it 
becomes useful for them to set boundary conditions for it.  
Investment decisions can be associated to options and standard models for their calculation 
assume that their exercise is simultaneous and uninformative, and that agents perfectly know 
the true value of the parameters to be used in the formula and hence can decide whether or 
not to invest5. However, there are many situations in the context of real assets where agents 
are in possession of imperfect or private knowledge of relevant information, meaning that the 
estimation of value that they are doing could be subject to differences. In this context of 
imperfect information investors can react by calibrating their expectations taking into account 
what they see other agents do. This happens in every situation where decisions under 
uncertainty must be taken: agents tend to see what others do, therefore decisions made by 
participants release private information to the market and may change expectations. The 
herd behavior is usually associated to such environments, where informational cascades may 
obtain. In the context of investment and abandonment decisions regarding real assets (real 
options), decisions made by participants have to take into consideration the decisions made 
by others, given the uncertainty regarding the true value of parameters (as opposite to 
financial options where parameters may be well known, in real options the parameters have 
to be calculated) and therefore can give rise to deviations from optimal conditions of 
exercising.  
 
 
3 Model of Analysis 
 
We present a representative agent holding an investment option who has to decide whether 
to invest or not and when. She has two sources of information, her private information 
recognized as partial and incomplete, and the information arising from decisions made by 
other agents. The problem of real options is that the underlying asset could be imperfectly 
calculated given that the parameters are privately estimated. As a consequence the optimal 
exercising of the option can be different from the situation where parameters are perfectly 
observed. We will present a model of n risk neutral6 agents indexed by the variable i, with n ≥ 
2 where the number of participants is of common knowledge. Each agent holds an identical 
investment option which can be exercised at any time (the option is perpetual and hence of 
the american type and decisions are taken in continuous time). The exact payoff of the option 
is not completely known by all agents as it depends on the aggregation of information. The 
optimal exercising strategy will then be contingent not only on the value of the private 
information but also on the information arising from decisions made by other agents.  
We denote the payoff function ate exercise as Vt – I and we introduce a variable θ, whose 
realization affects the payoff of the real option. The value of this variable is not known by all 
agents, given that it comes from the aggregation of all private signals, becoming of public 
knowledge when all the participants have exercised their options.7 The payoff will then be: 
 
 Max  [θ Vt - I, 0]           [1]  

                                                           
4 This approach to valuation adopts many concepts and intuition from statistics because to value implies to 
calculate the value of an unknown parameter using incomplete information. 
5 In financial options the value of the underlying asset is perfectly known from the market, knowing whether an 
option is “in the money” or “out of the money” which is not the case in real options, where the value has to be 
subjectively estimated.  
6 The assumption or risk neutrality can be easily relaxed without altering the main results.  
7 This assumption is more appropriate for private and less developed markets, where transaction costs, frictions 
and “noise” may perturb the prices in the market as a vehicle of information. 
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We can intuitively associate Vt to some sort of “average” or state level of the value8. We 
model the dynamics of Vt in the usual form: 
 
dV = αVdt + σVdz          [2] 
 
where α is the conditional and instantaneous rate of appreciation of the value, σ is the 
instantaneous standard deviation, and dz follows a standard Wiener process. The variable θ 
is made by a constant and the sum of all the private signals in the form: 
 
θ = µ + S1 + S2 + ….+ Sn          [3] 
   
where µ is the expected value of θ and Si are the independent signals, which have zero 
mean and positive and finite variance V(Si), Every agent knows her own signal, the 
parameters of the distribution of signals but does not know the real value of others´ signals. 
At time t=0 the exact value of θ is unknown to every agent, and each one makes an inference 
of it by taking into account private information. If every agent revealed the true value of the 
signal, then all of them can coordinate and calculate the true value of the aggregation 
variable; however, that is not the case, given that in some cases agents have incentives to 
keep their own information private and try to guess the rest9. 
Given this setup, the agent has to make an investment decision knowing:  

- her own signal,  
- the knowledge of decisions made by others,  
- the underlying value of the state variable.  
 

We assume two boundaries for the private signal (Smin < 0 and Si= Smax >0) The difference 
with models already treated in literature is that each agent does not known the exact value of 
the rest of the signals, which are inferred from the decisions already taken and from the 
knowledge of the distribution of signals. The stochastic process for V defined in [2] ensures 
that at some time T it will become optimal for the agent to invest, releasing information to the 
market. The fact is that agents do not know who of them holds the highest value for the 
signal, therefore they are continuously revising their expectations according to the decisions 
made by others. The investment decision process hence turns into a trade off between the 
benefit of waiting to see other’s decisions, and investing to grab the payoff at some subjective 
optimal time. 
 
 
3.1 The case of perfect information 
It is useful to start with the case of perfect information. If that was the case and every agent 
made public her private signal, all the agents will be able to calibrate the value of the 
aggregation variable, and simultaneously exercise their options at the moment where Vt 
reaches the optimal value V*(θ). By denoting Wi (V;θ) to the value of the investment option 
where θ is of public knowledge, W(V;θ) must solve the following equation: 
 
½ W" (V) σ2 V2  + (r - δ) VW'(V) - r W = 0        [4] 
 
where by making use that the agent is risk neutral we get that r = α + δ, then: 
 
½ W" (V) σ2 V2  + α V W'(V) - r W = 0        [5] 
 

                                                           
8 Could be the price of the square meter in the real estate market, or the price earning ratio in the equity market 
9 The assumption of conveying information through actions and not words is of extended use in the literature. If 
agents were credible, they would have incentives to provide wrong information, trying to take advantage of that. 
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This equation must be solved subject to appropriate boundary conditions, which ensure that 
the optimal strategy of investment is chosen: 
 
W(V*) = θ V*(θ) - I          [6a] 
W'(V*) = θ           [6b] 
 
The first condition is known as "value matching", the second one is the "smooth pasting" or 
"high contact" condition, both ensure that he value V* is chosen to maximize the option 
value10. The solution for the value of the option W(V) and the trigger value V* can be 
expressed then as: 
 
W(V;θ) =  (I/(β-1))1-β (θ/β)β Vβ  for V < V*(θ)     [7a] 
  
  θ V - I    for V ≥ V*(θ)     [7b] 
 
 
where  
 

I
I

1
)(*V >

θ−β
β=θ 11          [8] 

 
and 
 

1
r2)2/()2/(

2

2222

>
σ

σ+σ−α+σ−α−
=β       [9] 

 
where α < r  to ensure convergence. Equation [8] represents the value of exercise V*(θ) 
consistent with perfect information, where all agents invest at a time T*(θ)= inf(t ≥ 0: V(t) ≥ 
V*(θ)). 
 
 
 
4 The case of partial information 
 
We now consider a model where agents have partial information regarding the value of the 
aggregation variable. At each moment of time, the set of information held by each agent 
contains not only the known value of her private signal, but also the inference made about 
the value of other’s signals given the knowledge of exercise (or lack of it) by them. They 
update the conditional expectation of θi by observing what other agents have done or not.  
 
 
4 .1 Equilibrium with information revelation 
We derive the equilibrium for a game of n ≥ 2 agents. The agents know the value of their 
private signal and they infer the value of the aggregation variable by seeing what others do or 
not. At some moment of time the state variable reaches the trigger value V*i for agent i 
according to [7] and [8] and consistent with Si, which presses the agent to make a decision 
between:  
 
- waiting to see what other agents do,  

                                                           
10 The functional form of  W(V;θ) is easily obtained, see Grenadier (1999). 
11 We see that V has to be well above the cost of investment I for an agent to invest, because there is a value in 
the waiting option under uncertainty. 
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- killing the option and investing.  
 
Every agent will calculate an optimal value V*i according to [8] indicating the subjective 
trigger at which she would exercise her option based in her own estimation of θ, which 
happens at time T*i. Given the distribution of Si between the two boundaries, this decision will 
have to be evaluated first by the agent holding the highest value of the signal, now denoted 
1. However, given the aggregation of information and the lack of coordination, at that moment 
the agent will have to revise her conditional expectation of the aggregation variable given that 
no one has taken a decision.  
 
 
4.2 Equilibrium with two agents 
Given that the variable V follows the process set in equation [2] and given the private signals 
Si, the investment strategy for every agent  i =1,2 will be contingent on: 
 

- the current value of Vt   
- her signal Si  
- the strategy of exercise followed by the other agent.  

 
The payoff at the time of exercise is θ*Vt - I. For the purpose of the model we assume that 
signals follow a uniform distribution12 in the space [Smin, Smax] : 
 
Si ∈ [Smin, Smax], i = 1,2, with Smin< 0, Smax > 0       [10] 
 
giving rise to the aggregation variable  
 
θ = µ + S1 + S2           [11] 
 
where  
 
µ > S1 + S2            [12] 
 
which guarantees exercise of options at some finite time T13.  
 
We denote the investment decision by the binary variable14 
 
xi = 0 if agent i chooses not to invest        [13a] 
  
xi = 1 if she chooses to invest         (13b] 
 
Each agent i has an initial expectation about the value of the signal of the other agent j 
conditional on not exercise of the option (xj=0) 
 

00x
S

E
j

j
i =





=            [14] 

 
which in turns means that the expected value of θ for agent i is  

                                                           
12 The assumption of uniform distribution makes more tractable the model, but other distributional forms can be 
used.    
13 From here onwards we normalize θ in [11] from µ .  
14 This is a key aspect of this paper. The signal Si is continuous in the space defined, while the decision observed 
adopts the form of a binary variable, being xi an imperfect indicator of the true value of Si and hence of θ. 
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i
j

i S0xE =





=

θ            [15] 

 
The dynamics of Vt according to [2] and the fact that agent 1 has the highest value for the 
signal will make that at some time T*1 the state variable V will reach the optimal value V*1 for 
agent 1 according to [8] and conditional on what she thinks about the signal of agent 2, given 
that until that time the conditional expected value of θ was S1 according to [15]. At this 
moment occurs the first relevant event, where agent 1 has to decide whether to invest or not: 
if agent 1 realizes that if she was alone in the market that would be the time T*1, then she 
revises her expectation of θ taking into consideration the fact that agent 2 has not yet 
invested, making her change her conditional expectation of the aggregation variable θ given 
that now she thinks that the signal S2 of the other agent has to be between Smin and S1 giving 
rise to the new conditional value θ: 
 

1
min1

1
2

1 S
2

SS
S0xE <







 ++=






=
θ          [16] 

 
and hence agent 1 has to wait until the state variable reaches a higher value given that lack 
of exercise by agent 2 has changed agent 1´s conditional expectation. The agent 1 does not 
invest given that change in expectations has increased the trigger value V*1 to V**1 consistent 
with [16]. 
In the same way, even in the case that the signal of agent 2 is below to that of agent 1, and if 
agent 1 has not yet invested, the conditional value of the aggregation variable θ for agent 2 is 
similar the previous case according to [15]: 
 

2
1

2 S0xE =






=
θ           [17] 

 
where at some time T*2 Vt reaches V*2 and it becomes optimal for agent 2 to invest given the 
value of her private signal  and considering that agent 1 has not yet invested. At that time, 
agent 2 thinks that she has the highest signal (she does not know that agent 1 has indeed 
the highest signal), and similarly to the process of revision of expectations undertaken by 1, 
she revises her conditional expectation of θ, where the lack of exercise of the option by 1 lets 
her assume her signal S2 is highest and hence she reacts by increasing her optimal trigger 
value V2* to V**2 in the same way as investor 1:  
 

2
min2

2
1

2 S
2

SS
S0xE <







 ++=






=
θ         [18] 

 
where  
 







=
θ>







=
θ

0xE0xE
1

2
2

1          [19] 

  
given that the signal of 1 is higher than that of. 
 
The dynamics of Vt leads that at some time T**1 for a trigger value V**1 according to [8] it 
becomes optimal for agent 1 to invest given the value of her conditional expectation of θ from 
[16], taking as given that agent 2 has not yet exercised her investment option.  
Given that according to [19] the conditional expected value of θ is greater for agent 1 than for 
agent 2, it follows that the trigger value will be lower for agent 1 V**1 < V**2 according to [8], 
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where the first agent that will have to decide whether to invest or not at time T**1 will be agent 
1. When Vt=V**1, where θ1 according to [16], agent 1 finds optimal to invest and release such 
information to the market, based on her private signal and on the fact that the other agent 
has no invested.  
Whit respect to agent 2, and knowing that agent 1 has now invested, we can find two 
situations:  
 
- agent 2 has revised her conditional expectation of the aggregation variable (conditional 

on the fact that agent 1 has not invested),  
- agent 2 has not revised her conditional expectation given that the state variable V has not 

reached her trigger value. 
 
If Vt has not yet reached the critical value V*2 which triggers the first revision of expectations 
by agent 2, e.g. from:  
 
E2[θ]= S2            [20] 
 
to 
 








 ++=






=
θ

2

SS
S0xE min2

2
1

2         [21] 

 
it would mean that the state variable has not reached the critical value V*2 for agent 2, and 
therefore agent 2 has not time to revise her conditional expectation because she is surprised 
by the decision of agent 1 which in turn gives her partial information regarding the value of 
agent 1´s signal, therefore with this information in hand she revises her conditional 
expectation according to [20] in the form: 
 








 ++=






=
θ

2

SS
S1xE max2

2
1

2         [22] 

 
where she infers that agent 1´s signal has to be between her own signal and the upper 
bound.  
The alternative situation (see graph 1) is the one where agent 2 has time to revise her 
conditional expectation of the value of the aggregation variable because the state variable 
reaches the critical value V*2 and agent 1 has not yet invested, making her think she has the 
highest value for the signal Si. Agent 2 then lowers her conditional expectation about S1, 
which after some period of time is revised again when she sees agent 1 decision of investing: 
 

2

SS
1x

SE max2

1

1
2

+
=







=          [23] 

 
when she observes the decision of investing by agent 1, where the conditional expected 
value of θ for agent 2 will be: 
 








 ++=






=
θ

2

SS
S1xE max2

2
1

2         [24] 

 
which in turn is greater to the conditional expectation of θ given the absence of investment by 
agent 1: 
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






 ++=






=
θ

2

SS
S0xE min2

2
1

2         [25] 

 
Agent 2 revises her optimal investment strategy according to the revelation of information 
released by agent 1.  
 
The following graph allows us to better see the dynamics of decisions of the agents. 
 

Graph 1 Simulated dynamics for state variable V and trigger values for decisions 
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From the graph we observe that the trigger value V*i is reached first by agent 1 at the critical 
value V*1 given her signal is the highest, but here she revises down her conditional 
expectation of the aggregation variable, and the investment decision is taken when the state 
variable reaches the second critical value V**1 (consistent with the revised θ according to 
[16]); regarding agent 2 the two situations mentioned are labeled A and B, where in A 
investor 2 has time to lower her expectation according to [21] so when she sees agent 1´s  
decision of investing she revises up again the conditional expectation of according to 
equation  [22]; in B agent 2 has no time to lower her expectation because agent 1´s decision 
of investing is made before the state variable reaches the first critical value for agent 2, so 
she revises up her conditional expectation of the aggregation variable according to [22] 
without passing through the reformulation of equation [21]. Before continuing, it becomes 
relevant to state the conditions under which: -agent 2 has time to first revise down her 
conditional expectation E2[θ] and the revise it up when agent 1 invests, -or she is surprised 
by the decision of agent 1 without passing through the first revision, because at time t<T*2 
she observes agent 1 investing: 
For agent 2 to revise down her expectation means to change at time T*2 her estimation of θ 
according to [20] and [21] given the absence of decision by agent 1. Taking into account the 
information held by agent 1, she decides to invest when the value Vt reaches the critical 
value V**1 consistent with the new estimation of θ for agent 1 according to [16]. 
Agent 2 will not have time to revise down her conditional expectation if agent 1 invests before 
the state variable reaches the critical value V*2 for agent 2, which will happen when: 
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






 ++<
2

SS
SS min1

12           [26] 

 
which leads agent 2 to revise her conditional expectation of the aggregation variable 
according to equations [20] and [24]. If this was not the case, then agent 2 has time lo revise 
down her conditional expectation, and the revise it up when she sees agent 1 investing.  
There are two points that deserve special treatment in the model. The first point is regarding 
the timing of the investment, in the sense of evaluating the conditions under which agent 1 
will decide to invest before the optimal time T* with perfect aggregation of information, and 
when she will invest after that time (excessive waiting). The second point that deserves 
special attention is the conditions under which we can find an informational cascade where 
the decision made by agent 1 automatically triggers investment by agent 2. Now we treat the 
two points separately. 
 
 
4.2.1 Timing of investment 
If there were no information aggregation problems and signal were of public knowledge (e.g. 
θ = S1+ S2 is perfectly known) then there would be an optimal timing of investment T* 
consistent with θ where everybody invests at the same time and coordinated, according to 
equations [7] and [8]. The private feature of signals makes the agent with the highest signal 
to first enter the market, which in turn has not to coincide with the optimal time T*. As it was 
already shown, when the value of the state variable Vt reaches the critical value V*1 in T*1, 
agent 1 realizes she may have the highest signal; the fact that the other agent has not 
invested yet makes agent 1 revise her expectation of S2 from E1[S2] = 0 to E1[S2/x2=0] = (S1 + 
Smin)/2, where E1[S2] > E1[S2/x2=0] in line with the mechanism already described on the 
previous section. This situation is not trivial: agent 1 exercises her investment option at T**1, 
later than time T*1 where she would have invested had not taken into account information 
regarding the expectation of agent 2´s signal15. Agent 1 chooses to incorporate information 
coming from the market and decides to wait instead of deciding along with her own signal S1 
only. As it was mentioned, agent 2 knows the true value of her signal S2, while agent 1 
estimates it conditional on the observation of binary variable of investing or not and on the 
boundaries set for S. Agent 1 would be investing at the optimal time T* = T**1 if and only if 
her conditional expectation of the signal of agent 2 coincides with the true value,  
 

2
2

2
1 S0x

SE =






=           [27] 

 
where it follows that 
 

2
min1 S

2

SS =+
           [28] 

 
and  
 

min21 SS2S −=           [29] 
 
Every time the left side of [29] is greater than right side, agent 1 will be overestimating the 
true value of the signal of agent 2, making that the decision of investing is made at a time T 
previous to the optimal, T**1< T*, where agent 1 hurries to invest. If on the contrary, the left 

                                                           
15 States the difference between investing by using only private information or including information released to 
the market by others. 
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side of [29] is smaller than the second, agent 1 will be underestimating the true value of the 
signal of agent 2 S2, where agent 1 will enter after the optimal time, T**1 > T*. 
 
 
4.2.2 Consecutive decisions of investing 
We have derived the time T**1 at which agent 1 decides to exercise her option, now we will 
treat the conditions under which agent 2 decides to immediately invest after seeing agent 1´s 
decision. Likewise agent 1, agent 2 does not know whether her signal is the highest and her 
conditional expectation of agent 1´s signal is E2[S1] = 0 according to (20). Given the 
dynamics of Vt, there will be a time T*2 where it becomes optimal for agent 2 to invest taking 
into account that agent 1 has not invested. This time T*2 can be greater or smaller that T**1: if 
T*2<T**1, agent 2 has time to revise down her conditional expectation of agent 1´s signal S1 
according to the conditions derived in [26]). Given that agent 1 has not yet invested, agent 2 
revises her conditional expectation of agent 1´s signal S1 moving the expectation from E2[S1] 
= 0 to E2[S1/x1=0] = (S2 + Smin)/2, where E2[S1]> E2[S1/x1=0] according to [20] and [21]. For 
this situation to happen, it must follow that 
 








 +
+>

2

SS
SS min1

12           [30] 

 
meaning that the signals have to be close to each other. 
If that was not the case, then agent 2 has no time to revise down the conditional expectation 
about agent 1´s signal and hence her estimation of the aggregation variable θ, making to 
revise it up (alternative A in graph 1). Given this, we now formulate the condition that has to 
be satisfied for agent 2 to immediately follow agent 1´s decision. Agent 2 will immediately 
exercise her option if the expected conditional value of the aggregation variable θ for agent 2 
given that agent 1 invests according to [25] is greater than the expected conditional value of 
θ for agent 1 according to [16]: 
 
 

2

SS
S0xE min2

2
1

2

+
+=







=
θ > 1

min1
1

2
1 S

2

SS
S0xE <







 ++=






=
θ    [31] 

 
or alternatively: 
 

[ ]minmax12 SS
3

1
SS −−>          [32] 

 
The last equation shows that for agent 2 to immediately follow agent 1, the signals should be 
sufficiently close to each other, regardless the fact that private estimations of the trigger value 
of the state variable are differently for the two agents; in fact, the two agents invest with 
different estimations of the value θ Vt (θi Vt in each case).  
The critical value Vt diminishes for agent 2, from V*2 to V**2, given that the new conditional 
value of θ is greater than the one previous to the expectation adjustment based on the 
investing decision of agent 1. This situation motivates that agent 2 eventually decides to 
invest immediately, following agent 1´s decision. The effects arising are:  
 
- we can find investment made either before or after the optimal time as a consequence of 

lack of coordination between participants. This effect is different form the one shown on 
Grenadier (1999). 

- We can find an informational cascade causing that agent 2 immediately follows agent 1´s 
decision after revising her conditional expectation.  
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- a point that differs from Grenadier (1999) is that no agent knows who of them has the 
highest signal until information is revealed to the market.  

 
 
 
4.3 The case of n agents or investors 
In this section we extend the model to treat the case where we have n > 2 agents holding 
each an investment option. Each agent holds an investment option whose payoff at exercise 
is θ Vt - I. We again assume a uniform distribution for the private signals in the space: 
 
Si ∈ [Smin, Smax], i = 1,…, n, with Smin< 0, Smax > 0       [33] 
 
where agents are indexed from 1 to n based on the value of their private signals, S1 > S2 > S3 

> …. Sn, giving rise to the aggregation variable: 
 
θ = µ + S1 + S2+ …..+Sn          [34] 
 
where again  
 
µ > Σ (Si)

16, for i= 1…n         [35] 
 
which guarantees exercise of options in finite time like [12]. We again denote the decision of 
investing or not by a binary variable according to [13a] and [13b] for each investor i. 
Agents only know in the beginning the value of their own signal, giving rise to the expectation 
of the value of signals of the rest of agents j (j ≠ i) conditional on xj=0 
 

ij00x
S

E
j

j
i ≠∀=





= K          [36] 

 
which in turn means that the expected value of θ for agent i is:  
 

i
j

i S0xE =





=

θ           [37] 

 
The agent with the highest level for her private signal is labeled 1, and henceforth. The 
dynamics of Vt according to [2] will make that at some time T*1 < ∞ Vt will reach the initial 
critical value V*1 for agent 1 according to [8], knowing that until that time no one has 
exercised her option, where E1[θ]  = S1 according to [37]. In the same tense as in the case of 
n=2 agents, agent 1 revises her expectation regarding the value of the aggregation variable θ 
by estimating that the rest of the signals are situated between Smin y S1 for each agent j (j≠1), 
giving rise to the new conditional expected value for the aggregation variable for agent 1: 
 

1
min1

1
j

1 S
2

SS
*)1n(S1j,0xE <







 +−+=





≠∀=

θ       [38] 

 
Under this revision, agent 1 has to wait more until Vt reaches a higher second critical value 
V**1 consistent with the process of revision of expectations by agent 1 in the form: 
 

][ES
2

SS
*)1n(Sij,0xE ii

mini
i

j
i θ=<







 +−+=





≠∀=

θ      [39] 

                                                           
16 It is valid the simplification made in footnote 14.  
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which according to [8] implies a V**1 > V*1 in the same way as when there were two 
participants, but with the difference now that the increase in the number of participants has 
amplified the conditional estimation of the other agents´ signals which in turn increases more 
the critical value V**1 in comparison with the case of n=2 agents. Each agent j (j≠1) performs 
a similar process of revision of expectations regarding the value of θ 
 

j
i

j S0xE =






=
θ  for all i ≠j         [40] 

 
where there will be an optimal timing T*j for each agent j≠i to invest, unless those with the 
highest signals find optimal to invest before the revision of the expectations by those with 
lower signals. For each agent j we find two alternative situations: 
 
- agent j revises down her conditional expectation of the aggregation variable θ given no 

one has invested yet. 
- agent j observes that some one invests before she has time to revise down her 

expectation of θ, and hence she revises it up given the information released to the 
market.  

 
Conditions for each situation to happen have been of treatment in the previous section, so it 
does not become relevant to repeat them now. It is worth however to mention that any of the 
two situations can happen: agent 2 (and the rest) revises her expectation taking into 
consideration the presence or absence of investments. In this last case agent 2, who does 
not know that agent 1 holds the highest signal, revises up her conditional expectation of θ in 
the some way done by agent 1, giving rise to the new critical value V**2 > V*2 arising from:  
 








 +−+=






≠∀=
θ

2

SS
*)1n(S2i,0xE min2

2
i

2       [41] 

 
where  
 







≠∀=
θ>







≠∀=
θ

2i,0xE1i,0xE
i

2
i

1        [42] 

  
The rest of the agents (3 to n) act in a similar way. 
 
The dynamics of Vt leads to some time T**1 with associated value V=V**1 where it becomes 
optimal for agent 1 to invest based on her conditional revised expectation of the aggregation 
variable θ considering absence of investments by the other participants according to [39]. 
Agent 1 releases information to the market with her decision meaning that agent 2 (and the 
rest of agents) has to revise her conditional expectation in the form: 
 

2

SS
2,1i,0x,1x

SE max2

i1

1
2

+=






≠∀==        [43] 

 
where the expected conditional value of θ for agent 2 will be: 
 








 +−+






 ++=







≠∀==
θ

2

SS
*)2n(

2

SS
S2,1i,0x,1xE min2max2

2
i1

2    (44) 
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The last equation shows that agent 2 takes into consideration the act of investing made by 
agent 1, and the absence of investments by the other agents. 
Every agent i (apart from 1 and 2) undergoes a similar process of revision of expectations, 
giving rise to a new set of revised expectations for each one. For example, if agent 3 sees 
that agent 1 invests and the others do not, she revises her expectation of θ in the form  
 








 +
−+







 +
+=







≠∀==
θ

2

SS
*)2n(

2

SS
S3,1i,0x,1xE min3max3

3
i1

3    [45] 

 
while if she observes that both agent 1 and 2 invest, she revises her expectation in the 
following way: 
 








 +
−+







 +
+=





≠∀==

θ
2

SS
*)3n(

2

SS
*2S3,2,1i,0x,1xE min3max3

3
i2,1

3   [46] 

 
The rest of agents follow a similar pattern of revision of expectations according to their own 
signals and the decisions made by other agents. 
As in the case of two agents, there are two situations worth analyzing:  
- the situation where the time of the investment decision made by agent 1 differs from the 

optimal under perfect aggregation of information;  
- the situation where agents behave like a herd when they see decisions made by other 

agents 
 
 
4.3.1 Timing of the investment 
The first situation regards to the conditions under which the agent with the highest signal 
(indexed as 1) invests at a time different from the optimal with perfect aggregation. In the 
same tense as in the case of n=2 agents described in section 4.2.1, the decision made 
before or after the optimal timing under perfect aggregation will depend upon expectations 
formed by agent 1. She initially has an expectation of θ equal to S1, which is the revised 
when it becomes optimal to invest under this situation and she sees no one has yet invested 
(time T*1). The revision of expectations proceeds in the following result: 
 








 +−+=






≠∀=
θ

2

SS
*)1n(S1i,0xE min1

1
i

1       [47] 

 
when now Vt reaches the new critical value V**1 according to equation [8] consistent with the 
revised conditional expected value of θ according to [47], agent 1 decides to exercise her 
option and becomes the first to do it. Under perfect coordination, all agents should exercise 
their options simultaneously when the state variable Vt reaches a trigger or critical value V* 
according to [8] consistent with θ =ΣSi

17, i=1…n; this means that agent 1 will invest before the 
optimal case if: 
 

∑
≠

+>
+

−+
n

1i
i1

min1
1 SS

2

SS
*)1n(S         [48] 

 
and rearranging: 
 

                                                           
17 θ =µ + ΣSi if we show the original condition. 
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min

n

1i
i

1 S
1n

S
*2S −

−
>

∑
≠           [49] 

 
where  
 

min1ii SS*2S −> ≠           [50] 
 
which is a very similar condition to that obtained for the case of n=2 agents in [28] and [29], 
where S2 has been replaced by the average value of the signals of the agents without 
including agent 1.  
If the inequality follows the direction stated in [50], agent 1 would be overestimating the true 
value of the average value of signals of the rest pf the agents at the time of her decision, and 
hence investing before the optimal time. In the same way, we will find excessive waiting if  
 

min1i1 SS*2S −< ≠           [51] 
 
because agent 1 underestimates the average value of the signals of the rest of participants.  
In both cases the "leading investor" (named i=1) deviates from the optimal time T* under 
perfect coordination. 
 
 
4.3.2 Consecutive investment decisions 
The second point to be analyzed regards the behavior of agents and the sequence of 
investment decisions made by them. As we have shown, there is a time T**1 at which agent 1 
finds optimal to invest given the value of the revised conditional expectation of the 
aggregation variable. The decision releases information to the market and reveals it to the 
other agents, who can now revise their own conditional expectation of such variable 
(remember investors are indexed from 1 to n according to the level of their private signal in 
the form S1 > S2 > S3 > ………..> Sn). The agent labeled 2 has to decide whether to invest or 
to wait at the light of the new information arising from agent 1´s decision. For agent 2 to 
follow agent 1´s decision and invest, it must happen that her revised conditional expectation 
according to the following equation:   
 








 +−+






 ++=






≠∀==
θ

2

SS
*)2n(

2

SS
S2,1i,0x,1xE min2max2

2
i1

2    [52] 

 
is greater than the expected conditional value of the aggregation variable θ for agent 1,  
 








 +−+=






≠∀=
θ

2

SS
*)1n(S1i,0xE min1

1
i

1       [53] 

 
or rearranging terms: 
 

[ ]minmax12 SS*
1n

1
SS −

+
−<           [54] 

 
which is the extension of condition [32] for the case of n participants. Agent 2 will follow agent 
1´s decision if their signal are close enough (however not equal), with distance no larger than 
a critical distance given by  
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






+
−=

1n

SS
d minmax           [55] 

 
Now we consider the case of agent 3, where two situations can be analyzed: 
- the situation where agent 2 has decided not to invest, because her signal is at more 

distance than the critical distance d 
- the situation where agent 2 has decided to invest. 
 
If the first situation was the case, then agent 3 sees that only one agent has decided to 
invest, so she does not invest because her signal is lower than agent 2´s, who has decided 
not to invest.  
However, if agent 2 has decided to invest, now agent 3 sees two agents investing, so her 
revised conditional expectation must reflect this situation. According to equations [52], [53], 
and [54], agent 3 will invest and follow agent 2´s decision if when revising her conditional 
expectation: 
 








 +−+






 ++=





≠∀==

θ
2

SS
*)3n(

2

SS
*2S3,2,1i,0x,1xE min3max3

3
i2,1

3   [56] 

 
she gets that is greater than the conditional expected value of the aggregation variable θ for 
agent 1 as shown in equation [53], where by rearranging terms allows us to show the critical 
condition: 
 

[ ]minmax13 SS*
1n

2
SS −

+
−<          [57] 

 
The last equation shows that agent 3 will invest and follow agent 1 and agent 2 of her signal 
is sufficiently close to the one held by agent 1 (e.g., the distance between both is not greater 
than the critical distance d expressed in [55]): 
 

d*2SS 13 −<           [58] 

 
As a matter of fact, agent 2 has decided to invest, so her signal is at no greater distance of 
agent 1´s signal than the critical distance d according to [54] and [55], so it is a sufficient 
condition for agent 3 to immediately invest that her signal is at no greater distance of agent 
2´s signal than: 
 

[ ]minmax23 SS*
1n

1
SS −

+
−<          [59] 

 
In a similar way and more generally, agent indexed as j will immediately exercise her option 
given that the previous agents have decided so if  
 








 +
−+







 +
−+=





>∀=<∀=

θ
2

SS
*)jn(

2

SS
*)1j(Sji,0x,ji,1xE minjmaxj

j
ij

j   [60] 

 
is greater than the conditional expected value θ for agent i,  
 








 +−+=






≠∀=
θ

2

SS
*)1n(S1i,0xE mini

i
i
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or rearranging: 
 

[ ]minmaxij SS*
1n

)1j(
SS −

+
−−<         [62] 

 
which is similar to the conditions derived in [57] and [58] where immediate exercise of 
investment options happen for agents with signals sufficiently close to each other, distance 
between them not greater than the critical distance d: 
 

dSS 1jj <− −            [63] 

 
given that all agents with signals greater than agent j´s have chosen to exercise and reveal 
information. 
In case that inequality shown in equation [63] was verified in the opposite direction, then 
agent j does not copy the investment decision made by agent j-1 and waits until the state 
variable Vt reaches the critical value V**j.  
We can see from the calculations that the distance between signals has to be sufficiently 
wide (greater than critical distance d) to stop the chain of immediate exercise of investment 
options. Even more, once the chain is cut where agent z decides not to invest and wait until 
the state variable Vt reaches the trigger value V**z in line with her revised conditional 
expectation, the rest of agents will not invest either, waiting as well.  
Immediate investment decisions will take place for all agents with signals sufficiently close 
(e.g. distance smaller than critical distance d according to [55]), even in the case that their 
signals are not the same. The element giving rise to this situation is the fact that decisions 
are shown as a binary variable, while signals are in continuous time. This situation can give 
rise to more volatile investment behavior, generated by the new arrival of information 
regarding decisions.  
 
 
4.4 Sensitivity of the behavior of agents to a change in parameters. 
In this section we develop about the sensitivity of the variable of critical distance d to changes 
in relevant parameters:  
 
- the degree of dispersion of signals among participants (measured by the range Smax - 

Smin)  
- the number n of participants holding options. 
 
Recreating [55],  
 








+
−=

1n

SS
d minmax          [55bis] 

 
we observe that an increase in the range Smax - Smin positively affects the critical distance d 
and hence the likelihood of immediate decisions of investment (sort of herd behavior) in the 
form:  
 

0
n1

1

]SS[

d

minmax

>
+

=
−∂

∂
         [64] 

 
given Smax - Smin > 0 which is the case. The intuition arises from the fact that an increase in 
the range of possible values for the signals makes more difficult for agents to estimate the 
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true value of the signals of the rest of the participants (on the extreme, if there was no range, 
estimation would take place without error and perfect coordination will obtain). 
 
The other relevant aspect is to analyze the impact that the number of participants have in the 
critical distance d and hence in the likelihood of immediate sequence of investment 
decisions. The value of the partial derivative is negative: 
 

( ) 0
n1

1
*]SS[

n

d
2minmax <









+
−−=

∂
∂

        [65] 

 
which says that an increase in the number of participants reduces the value of the critical 
distance d and therefore makes more unlikely to obtain immediate investment decisions.  
 
In brief, from the comparative static we see that the less the number of participants in the 
market, and the more the dispersion of private signals, the more likely becomes to obtain 
immediate investment decisions. If we take into consideration that the role of markets is to 
convey information to a great number of agents, then we can suggest that underdeveloped 
capital markets (where investment takes place) may give rise to such problems like the ones 
shown here. 
 
 
 
 
5 Model for abandonment decisions 
 
We can model a similar framework like the one shown before for agents holding 
abandonment options; written on an asset whose value follows equation [2]´s dynamic and 
with aggregation variable as shown in [3].  
In this case, the agent holds a perpetual option to abandon an asset, getting in exchange a 
liquidation value labeled L18, from where the payoff function will become: 
 
 Max [L - θ Vt, 0]           [66]  
 
The solution for the value of this option P(V) is obtained in a similar way to the one shown in 
section19, where the boundary conditions are: 
 
Lim P V→∞ = 0            [67a] 
P(V*) = L - θV*(θ)          [67b] 
  
and V* reflects the value Vt at which it becomes optimal to abandon the investment; the 
functional form of P(V;θ) is easily obtained: 
 
P(V;θ) =  (L /(1+β))1+β ββ (θV)-β for V > V*(θ)      [68a] 
  
  L - θ V   for V≤ V*(θ)      [68b] 
 
 
where 
 

                                                           
18 Which can be associated to a recovery value of the asset. In corporate finance can be associated to the face 
value of debt when it is used as a source of financing, where V is the market value of the collaterals. 
19 See Annex A from chapter III of Dapena (2004ª). 
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L
L

1
)(*V <

θβ+
β=θ           [69] 

 
and 
 

1
r2)2/()2/(

2

2222

>
σ

σ+σ−α+σ−α−
=β       [70] 

 
Equation [69] shows the trigger value V*(θ) at which it becomes optimal to abandon given 
perfect coordination, where all agents get rid of their investments at a time T*(θ)= inf(t ≥ 0: 
V(t) ≤ V*(θ)). 
With this solution in hand, the analysis follows the one developed in section 4 taking into 
account that now the “leading agent” will be that with the lowest value for her private signal.  
 
 
 
6 Conclusions 
 
Investment and abandonment decisions can be analyzed by using the frame of the real 
options analysis. However, information regarding the true value of the parameters to be 
incorporated into the valuation of such options is not always accurately measured, giving rise 
to different estimations made by different agents (private signals). The existence of private 
signals and difficulties in the aggregation of information can give rise to invest before or after 
an optimal time. In a similar way, it can give rise to a behavior of a sequence of immediate 
exercise of real options even in the case where private signals are different among agents 
participating in the market. In the paper we have developed some conditions under which this 
behavior can be exacerbated, which is the case where there are few participant in the 
market, and the range of private signals is wide enough. Both conditions can be associated 
to underdeveloped markets, with not many participants, and prices not reflecting 
appropriately the information, giving rise to many private prices. If the case to be treated is 
the capital market, or the market for saving and investment, then investment decision can 
deviate from an optimal situation and sequence of investment decisions even with different 
sets of information may arise, giving rise to volatility in the amount of investment, and wide 
swings in the waves of investment and disinvestment aggregates. We left as a suggestion of 
future research to try to test the model.  
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